# Spaceship Relativity Problem

1. Homework Statement

Spaceship #1 moves with a velocity of .2c in the positive x direction of reference frame S. Spaceship #2, moving in the same direction with a speed of .6c is 3 x 10^9 m behind. At what times in reference frames S, and in the reference frame of ship #1, will 2 catch up with 1.

2. Homework Equations

3. The Attempt at a Solution

vrelevative = .6c-.2c / (1-.6(.2)) = .455c
Then, 10 light seconds / .455c = 22.0s

Or...is it done classically .6-.2 = .4, making it 25s?

For the second part, is it done like so?

beta = 1/(sqrt (1-.2)) = 1.02
Then t = 22/1.02 = 21.6s or if it was 25s, 25/1.02 = 24.5s

Can someone explain to me which of these two (if either) are correct? I am not sure if it is done classically or with relativity, so can you explain why it is either.

Thank you very much.

Related Introductory Physics Homework Help News on Phys.org
tiny-tim
Homework Helper
welcome to pf!

hi bethany555! welcome to pf! Or...is it done classically .6-.2 = .4, making it 25s?
yes … in any one frame, speed etc works just the way it should! (you only need those pesky gammas :grumpy: if you're having to convert measurements from another frame first )
For the second part, is it done like so? …
(btw, that's called gamma, not beta … beta is v/c )

imo, it's always safest to use the original lorentz transformation formulas

(rather than use short-cut contraction formulas which usually work only for rigid separations)

in this case, you know that (in frame S) t = 25, x = … , so t' = … ? Thank you very much!

For the second part, would it be the following --

Vrelative = .455c (as shown above)

L = 10c seconds (sqrt(1-.45^2)) = 8.93

8.93/.455 = 19.6s

I'm not sure if I'm using the correct v for all parts, would you be able to tell me if I did this correct? Thank you again so much!

tiny-tim
Homework Helper
(sqrt(1-.45^2))
no, your gamma should be for the relative speed between your two frames,

ie between S and the frame of the 1st ship (0.2 c)

and i really think you should use the t' = γt - γvx formula from the Lorentz transformation

no, your gamma should be for the relative speed between your two frames,

ie between S and the frame of the 1st ship (0.2 c)

and i really think you should use the t' = γt - γvx formula from the Lorentz transformation
Thanks! So would it be 9.80cs / .455 = 21.5s?

When I use the Lorenz equation, I get
t' = (1/(sqrt(1-.2^2)) ) * 25 - (1/(sqrt(1-.2^2)) ) .2 * 10, I get 23.47?

tiny-tim
what is this? yes, that looks ok 