Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Spacetime Interval

  1. Apr 6, 2010 #1
    I have been working through Schutz's A First Course in General Relativity and was a little confused by how he presents the space time interval:

    [tex]\Delta \overline{s}^2 = \sum_{\alpha = 0}^{3} \sum_{\beta = 0}^{3} M_{\alpha \beta} (\Delta x^{\alpha})(\Delta x^{\beta}) [/tex] for some numbers [tex] \left\{M_{\alpha \beta} ; \alpha , \beta = 0,...,3\right\} [/tex] which may be functions of the relative velocity between the frames.

    And then says:

    Note that we can suppose that
    [tex] M_{\alpha \beta} = M_{\beta \alpha} [/tex] for all [tex]\alpha[/tex] and [tex]\beta[/tex], since only the sum [tex] M_{\alpha \beta} + M_{\beta \alpha} [/tex] ever appears when [tex] \alpha \ne \beta [/tex]

    Anyways I'm confused about his "note" - why can we suppose that?
  2. jcsd
  3. Apr 7, 2010 #2


    User Avatar
    Homework Helper
    Gold Member

    Since Δx1Δx2 and Δx2Δx1 are the same, the only thing that matters is the sum M12 + M21 :

    [tex] M_{12} \Delta x^1 \Delta x^2 + M_{21} \Delta x^2 \Delta x^1 = (M_{12} + M_{21})\Delta x^1 \Delta x^2 [/tex]

    If this sum were, say, 6, then the term in the expansion would be 6Δx1Δx2, and we can just write this as 3Δx1Δx2 + 3Δx2Δx1.
  4. Apr 7, 2010 #3
    Is the following the correct expansion of:

    [tex] \Delta \overline{s}^2 = \sum_{\alpha = 0}^{3} \sum_{\beta = 0}^{3} M_{\alpha \beta} (\Delta x^{\alpha})(\Delta x^{\beta})
    = \sum_{\alpha = 0}^{3} (M_{\alpha 0} \Delta x^{\alpha} \Delta x ^{0} + M_{\alpha 1} \Delta x^{\alpha} \Delta x ^{1} + M_{\alpha 2} \Delta x^{\alpha} \Delta x ^{2} M_{\alpha 3} \Delta x^{\alpha} \Delta x ^{3}) [/tex]
    [tex] = M_{0 0} \Delta x^{0} \Delta x ^{1} + M_{01} \Delta x^{1} \Delta x^{0} + M_{02} \Delta x^{2} \Delta x^{0} + M_{03} \Delta x^{3} \Delta x^{0} + M_{10} \Delta x^{1} \Delta x^{0} + M_{11} \Delta x^{1} \Delta x^{1} + \cdot \cdot \cdot [/tex] [tex]+ M_{13} \Delta x^{1} \Delta x^{3} + M_{20} \Delta x^{2} \Delta x^{0} + \cdot \cdot \cdot + M_{23} \Delta x^{2} \Delta x^{3} + M_{30} \Delta x^{3} \Delta x^{0} + \cdot \cdot \cdot + M_{33} \Delta x^{3} \Delta x^{3} [/tex]

    Sorry, but I'm having a little trouble understanding what exactly the summation is.
  5. Apr 7, 2010 #4


    User Avatar
    Homework Helper
    Gold Member

    Yes, that's correct. (I think you made a typo in the 00 term.)

    Notice that the Mab term and the Mba term can always be combined into a single term, and the coefficent of ΔxaΔxb will be Mab + Mba, i.e. only this sum matters. We can always split it up equally between Mab and Mba, and make M a symmetric matrix.
    Last edited: Apr 7, 2010
  6. Apr 7, 2010 #5
    Okay, thanks, I'm pretty sure I understand this now. However, I'm probably going to have more questions as I continue through Schutz's treatment of the spacetime interval. Should I post them here, or make a new thread?
  7. Apr 7, 2010 #6


    User Avatar
    Homework Helper
    Gold Member

    I think it would be ok to post them here.
  8. Apr 7, 2010 #7


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    I would suggest making a new thread if it's a new topic.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook