Spectral representation of an incompressible flow

  • #1
34
0
Hi PH.

Let ##u_i(\mathbf{x},t)## be the velocity field in a periodic box of linear size ##2\pi##. The spectral representation of ##u_i(\mathbf{x},t)## is then
$$u_i(\mathbf{x},t) = \sum_{\mathbf{k}\in\mathbb{Z}^3}\hat{u}_i(\mathbf{k},t)e^{\iota k_jx_j}$$ where ι denotes the usual imaginary unit.

A flow is incompressible iff ##u_i(\mathbf{x})## is a solenodial verctor field, that is
$$\nabla_iu_i(\mathbf{x},t) = 0$$
Combining the above, I get
$$\begin{aligned}0 &= \nabla_iu_i(\mathbf{x},t) \\
&= \sum_{\mathbf{k}\in\mathbb{Z}^3}\hat{u}_i(\mathbf{k},t)\nabla_ie^{\iota k_jx_j} \\
&= \sum_{\mathbf{k}\in\mathbb{Z}^3}\iota k_j\delta_{ij}\hat{u}_i(\mathbf{k},t)e^{\iota k_jx_j} \\
&= \iota\sum_{\mathbf{k}\in\mathbb{Z}^3}k_j\hat{u}_i(\mathbf{k},t)e^{\iota k_jx_j}\end{aligned}$$

If ##u_i(\mathbf{x},t)## is to represent a physical flow velocity field, then ##u_i(\mathbf{x},t)## must be real function. That is ##\mathbf{u}(\mathbf{x}):[0,2\pi]^3\times\mathbb{R}\rightarrow\mathbb{R}^3## and thus ##\hat{u}_i(\mathbf{k}) = \hat{u}^\ast_i(-\mathbf{k})##. Therefore
$$\begin{aligned} \iota\sum_{\mathbf{k}\in\mathbb{Z}^3}k_j\hat{u}_i(\mathbf{k},t)e^{\iota k_jx_j} &= -\iota\sum_{\mathbf{k}\in\mathbb{N}^3}k_j\hat{u}_i(-\mathbf{k},t)e^{-\iota k_jx_j} + 0 + \iota\sum_{\mathbf{k}\in\mathbb{N}^3}k_j\hat{u}_i(\mathbf{k},t)e^{\iota k_jx_j} \\
&= \iota\sum_{\mathbf{k}\in\mathbb{N}^3}k_j\big[\hat{u}_i(\mathbf{k},t)e^{\iota k_jx_j} - \hat{u}_i(-\mathbf{k},t)e^{-\iota k_jx_j}\big] \\
&= \iota\sum_{\mathbf{k}\in\mathbb{N}^3}k_j\big[\hat{u}_i(\mathbf{k},t)e^{\iota k_jx_j} - \hat{u}^\ast_i(\mathbf{k},t)\big(e^{\iota k_jx_j}\big)^\ast\big] \\
&= 2\iota\sum_{\mathbf{k}\in\mathbb{N}^3}\Im\big[k_j\hat{u}_i(\mathbf{k},t)e^{\iota k_jx_j}\big] \end{aligned}$$

From the harmonic analysis I would expect the incompressibility condition to be $$k_i\hat{u}_i(\mathbf{k},t) = 0$$
Clearly, if this is true the incompressibility condition would be true. But I can't see how (unless I assume a sort of detailed balance in the above sum) the incompressibility condition imply the orthogonal relation ##k_i\hat{u}_i(\mathbf{k},t) = 0##.

Any help is appreciated :-)
 
Last edited:

Answers and Replies

  • #2
18,243
7,873
Thanks for the thread! This is an automated courtesy bump. Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post? The more details the better.
 

Related Threads on Spectral representation of an incompressible flow

Replies
2
Views
4K
  • Last Post
Replies
16
Views
4K
Replies
48
Views
11K
Replies
5
Views
1K
Replies
9
Views
2K
Replies
3
Views
9K
Replies
3
Views
6K
  • Last Post
Replies
1
Views
2K
Top