Exploring the Spectrum of φ - Eigenspace in Finite Fields

  • MHB
  • Thread starter mathmari
  • Start date
  • Tags
    Spectrum
In summary, we have discussed the concept of eigenvalues and eigenvectors for a prime $p$ and a defined field $\mathbb{F}_p$. We have also determined the spectrum and the dimension of the eigenspace for each element in the spectrum. We have also considered the basis $B$ of $\mathbb{K}^4$ and its relation to eigenvectors. Finally, we have provided calculations for specific cases of $\mathbb{K}$, such as $\mathbb{F}_2$ and $\mathbb{F}_3$.
  • #1
mathmari
Gold Member
MHB
5,049
7
Hey! 😊

For a prime $p$ we define $\mathbb{F}_p:=\mathbb{Z}/p\mathbb{Z}$.
Let $\mathbb{K}\in \{\mathbb{F}_2, \mathbb{F}_3, \mathbb{F}_5\}$ and let \begin{equation*}a=\begin{pmatrix}0 & 1 & 0 & 5 \\ 1 & 0 & 2 & 3 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0\end{pmatrix}\in M_4(\mathbb{K})\end{equation*}

  1. Determine $\text{spe}(\phi_a)$ and $\dim \text{Eig}(\lambda, \phi_a)$ for all $\lambda \in \text{spe}(\phi_a)$.
  2. Is there a basis $B$ of $\mathbb{K}^4$, such that each basis vector is an eigenvector, i.e. is there a basis $B$ of $\mathbb{K}^4$ such that $M_B(\phi_a)$ is a diagonal matrix.
I have done the following:

  1. The spectrum is the set of all eigenvalues. The spectrrum of $\phi_a$ is the spectrum of $a$. Is that correct? The characteristic polynomial is \begin{align*}\det (a-\lambda u_4)=0 &\Rightarrow \begin{vmatrix}-\lambda & 1 & 0 & 5 \\ 1 & -\lambda & 2 & 3 \\ 0 & 0 & -\lambda & -1 \\ 0 & 0 & 1 & -\lambda\end{vmatrix}=0 \\ & \Rightarrow (-\lambda)\cdot \begin{vmatrix} -\lambda & 2 & 3 \\ 0 & -\lambda & -1 \\ 0 & 1 & -\lambda\end{vmatrix}-1\cdot \begin{vmatrix} 1 & 0 & 5 \\ 0 & -\lambda & -1 \\ 0 & 1 & -\lambda\end{vmatrix}=0 \\ & \Rightarrow (-\lambda)\cdot (-\lambda)\cdot \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda\end{vmatrix}-1\cdot 1\cdot \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda\end{vmatrix} =0 \\ & \Rightarrow \lambda^2 \cdot \left [(-\lambda)^2-1\cdot (-1)\right ]- \left [(-\lambda)^2-1\cdot (-1)\right ]=0\\ & \Rightarrow \left (\lambda^2 -1\right )\cdot \left (\lambda^2+1\right )=0\end{align*} Therefore we have that $\text{spe}(\phi_a)=\left \{-1,1, -i,i\right\}$. Is that correct ?
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
Hey mathmari!

Shouldn't $\lambda$ be an element of $\mathbb K$?
Otherwise its scalar multiplication with a vector is not defined is it? (Worried)

Let's take a look at $\mathbb F_2$. It only has 0 and 1.
Which of those satisfy the characteristic equation? 🤔
 
  • #3
Klaas van Aarsen said:
Shouldn't $\lambda$ be an element of $\mathbb K$?
Otherwise its scalar multiplication with a vector is not defined is it? (Worried)

Let's take a look at $\mathbb F_2$. It only has 0 and 1.
Which of those satisfy the characteristic equation? 🤔

So do we have to take cases for $\mathbb{K}$ ?

If $\mathbb{K}=\mathbb{F}_2$ then $\lambda=1$ and so $\text{spe}(\phi_a)=\left \{1\right\}$.
If $\mathbb{K}=\mathbb{F}_3$ then $\lambda=1$ or $\lambda=2$ and so $\text{spe}(\phi_a)=\left \{1,2\right\}$.
If $\mathbb{K}=\mathbb{F}_5$ then $\lambda=1$, or $\lambda=2$, or $\lambda=3$ or $\lambda=4$ and so $\text{spe}(\phi_a)=\left \{1,2,3,4\right\}$.

Is that correct? :unsure:
 
  • #4
mathmari said:
So do we have to take cases for $\mathbb{K}$ ?

If $\mathbb{K}=\mathbb{F}_2$ then $\lambda=1$ and so $\text{spe}(\phi_a)=\left \{1\right\}$.
If $\mathbb{K}=\mathbb{F}_3$ then $\lambda=1$ or $\lambda=2$ and so $\text{spe}(\phi_a)=\left \{1,2\right\}$.
If $\mathbb{K}=\mathbb{F}_5$ then $\lambda=1$, or $\lambda=2$, or $\lambda=3$ or $\lambda=4$ and so $\text{spe}(\phi_a)=\left \{1,2,3,4\right\}$.

Is that correct?
Yep. (Nod)

As an additional observation, note that for $\mathbb F_2$ we have $1\equiv -1$. Consequently:
$$ (\lambda^2-1)(\lambda^2+1) =(\lambda^2-1)(\lambda^2-1) =(\lambda-1)^2(\lambda+1)^2 =(\lambda-1)^2(\lambda-1)^2 =(\lambda-1)^4$$
so $\lambda=1$ has algebraic multiplicity 4. :geek:
 
  • #5
Klaas van Aarsen said:
Yep. (Nod)

As an additional observation, note that for $\mathbb F_2$ we have $1\equiv -1$. Consequently:
$$ (\lambda^2-1)(\lambda^2+1) =(\lambda^2-1)(\lambda^2-1) =(\lambda-1)^2(\lambda+1)^2 =(\lambda-1)^2(\lambda-1)^2 =(\lambda-1)^4$$
so $\lambda=1$ has algebraic multiplicity 4. :geek:

Ok! So for each case of $\mathbb{K}$ we have to calculate the eigenvectors, right?
 
  • #6
mathmari said:
Ok! So for each case of $\mathbb{K}$ we have to calculate the eigenvectors, right?
I think so yes. :unsure:
Although for $\mathbb F_5$ we can observe that we have 4 distinct eigenvalues... 🤔
 
  • #7
Klaas van Aarsen said:
I think so yes. :unsure:
Although for $\mathbb F_5$ we can observe that we have 4 distinct eigenvalues... 🤔

So at each case of $\mathbb{K}$ we can also simplify the element of matrix, or not? For example the rightmost element in the first row, $5$, is equivalent to $1$ in $\mathbb{F}_2$, to $2$ in $\mathbb{F}_3$ and to $0$ in $\mathbb{F}_5$. Or do we not have to do that when we calculate the eigenvectors?
 
  • #8
mathmari said:
So at each case of $\mathbb{K}$ we can also simplify the element of matrix, or not? For example the rightmost element in the first row, $5$, is equivalent to $1$ in $\mathbb{F}_2$, to $2$ in $\mathbb{F}_3$ and to $0$ in $\mathbb{F}_5$. Or do we not have to do that when we calculate the eigenvectors?
We don't have to, but yes, it does make the calculations easier. 🤔
 
  • #9
I have done the following:

- For $\mathbb{K}=\mathbb{F}_2$ :

For $\lambda=1$ we have:
\begin{equation*}\begin{pmatrix}-1 & 1 & 0 & 5 \\ 1 & -1 & 2 & 3 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \end{equation*}
From Gauss algorithm we get:
\begin{align*}\begin{pmatrix}-1 & 1 & 0 & 5 \\ 1 & -1 & 2 & 3 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1\end{pmatrix} & \ \overset{Z_2:Z_2+Z_1}{\longrightarrow } \ \begin{pmatrix}-1 & 1 & 0 & 5 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1\end{pmatrix}\ \underset{Z_4:Z_4-\frac{1}{2}\cdot Z_2}{\overset{Z_3:Z_3+\frac{1}{2}\cdot Z_2}{\longrightarrow }} \ \begin{pmatrix}-1 & 1 & 0 & 5 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & -5\end{pmatrix} \\ & \ \overset{Z_4:Z_4+\frac{5}{3}\cdot Z_3}{\longrightarrow } \ \begin{pmatrix}-1 & 1 & 0 & 5 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{align*}
So we get the equations: \begin{equation*}\begin{cases}-x+y+5w=0 \\ 2z+8w=0 \\ 3w=0\end{cases} \Rightarrow \begin{cases}x=y \\ z=0 \\ w=0\end{cases}\end{equation*}
So the eigenspace is \begin{equation*}\left \{\begin{pmatrix}y \\ y \\ 0\\ 0\end{pmatrix} : y\in \mathbb{K}\right \}=\left \{y\cdot \begin{pmatrix}1 \\ 1 \\ 0\\ 0\end{pmatrix} : y\in \mathbb{K}\right \}\end{equation*}
Therefore the dimension of the eigenspace is $\dim \text{Eig}(1, \phi_a)=1$.
- For $\mathbb{K}=\mathbb{F}_3$ :

For $\lambda=1$ we have:
\begin{equation*}\begin{pmatrix}-1 & 1 & 0 & 5 \\ 1 & -1 & 2 & 3 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \end{equation*}
From Gauss algorithm we get:
\begin{align*}\begin{pmatrix}-1 & 1 & 0 & 5 \\ 1 & -1 & 2 & 3 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1\end{pmatrix} & \ \overset{Z_2:Z_2+Z_1}{\longrightarrow } \ \begin{pmatrix}-1 & 1 & 0 & 5 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1\end{pmatrix}\ \underset{Z_4:Z_4-\frac{1}{2}\cdot Z_2}{\overset{Z_3:Z_3+\frac{1}{2}\cdot Z_2}{\longrightarrow }} \ \begin{pmatrix}-1 & 1 & 0 & 5 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & -5\end{pmatrix} \\ & \ \overset{Z_4:Z_4+\frac{5}{3}\cdot Z_3}{\longrightarrow } \ \begin{pmatrix}-1 & 1 & 0 & 5 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{align*}
So we get the equations: \begin{equation*}\begin{cases}-x+y+5w=0 \\ 2z+8w=0 \\ 3w=0\end{cases} \Rightarrow \begin{cases}x=y \\ z=0 \\ w=0\end{cases}\end{equation*}
So the eigenspace is \begin{equation*}\left \{\begin{pmatrix}y \\ y \\ 0\\ 0\end{pmatrix} : y\in \mathbb{K}\right \}=\left \{y\cdot \begin{pmatrix}1 \\ 1 \\ 0\\ 0\end{pmatrix} : y\in \mathbb{K}\right \}\end{equation*}
Therefore the dimension of the eigenspace is $\dim \text{Eig}(1, \phi_a)=1$.

For $\lambda=2$ we have:
\begin{equation*}\begin{pmatrix}-2 & 1 & 0 & 5 \\ 1 & -2 & 2 & 3 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 1 & -2\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \end{equation*}
From Gauss algorithm we get:
\begin{align*}\begin{pmatrix}-2 & 1 & 0 & 5 \\ 1 & -2 & 2 & 3 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 1 & -2\end{pmatrix} & \ \overset{Z_2:Z_2+\frac{1}{2}\cdot Z_1}{\longrightarrow } \ \begin{pmatrix}-2 & 1 & 0 & 5 \\ 0 & -\frac{3}{2} & 2 & \frac{11}{2} \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 1 & -2\end{pmatrix} \ \overset{Z_4:Z_4+\frac{1}{2}\cdot Z_3}{\longrightarrow } \ \begin{pmatrix}-2 & 1 & 0 & 5 \\ 0 & -\frac{3}{2} & 2 & \frac{11}{2} \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 0 & -\frac{5}{2}\end{pmatrix}\end{align*}
So the eigenspace is \begin{equation*}\left \{\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \right \}\end{equation*}
Therefore the dimension of the eigenspace is $\dim \text{Eig}(2, \phi_a)=0$.- For $\mathbb{K}=\mathbb{F}_5$ :

For $\lambda=1$ we have:
\begin{equation*}\begin{pmatrix}-1 & 1 & 0 & 5 \\ 1 & -1 & 2 & 3 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \end{equation*}
From Gauss algorithm we get:
\begin{align*}\begin{pmatrix}-1 & 1 & 0 & 5 \\ 1 & -1 & 2 & 3 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1\end{pmatrix} & \ \overset{Z_2:Z_2+Z_1}{\longrightarrow } \ \begin{pmatrix}-1 & 1 & 0 & 5 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1\end{pmatrix}\ \underset{Z_4:Z_4-\frac{1}{2}\cdot Z_2}{\overset{Z_3:Z_3+\frac{1}{2}\cdot Z_2}{\longrightarrow }} \ \begin{pmatrix}-1 & 1 & 0 & 5 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & -5\end{pmatrix} \\ & \ \overset{Z_4:Z_4+\frac{5}{3}\cdot Z_3}{\longrightarrow } \ \begin{pmatrix}-1 & 1 & 0 & 5 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{align*}
So we get the equations \begin{equation*}\begin{cases}-x+y+5w=0 \\ 2z+8w=0 \\ 3w=0\end{cases} \Rightarrow \begin{cases}x=y \\ z=0 \\ w=0\end{cases}\end{equation*}
So the eigenspace is \begin{equation*}\left \{\begin{pmatrix}y \\ y \\ 0\\ 0\end{pmatrix} : y\in \mathbb{K}\right \}=\left \{y\cdot \begin{pmatrix}1 \\ 1 \\ 0\\ 0\end{pmatrix} : y\in \mathbb{K}\right \}\end{equation*}
Therefore the dimension of the eigenspace is $\dim \text{Eig}(1, \phi_a)=1$.

For $\lambda=2$ we have:
\begin{equation*}\begin{pmatrix}-2 & 1 & 0 & 5 \\ 1 & -2 & 2 & 3 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 1 & -2\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \end{equation*}
From Gauss algorithm we get:
\begin{align*}\begin{pmatrix}-2 & 1 & 0 & 5 \\ 1 & -2 & 2 & 3 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 1 & -2\end{pmatrix} & \ \overset{Z_2:Z_2+\frac{1}{2}\cdot Z_1}{\longrightarrow } \ \begin{pmatrix}-2 & 1 & 0 & 5 \\ 0 & -\frac{3}{2} & 2 & \frac{11}{2} \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 1 & -2\end{pmatrix} \ \overset{Z_4:Z_4+\frac{1}{2}\cdot Z_3}{\longrightarrow } \ \begin{pmatrix}-2 & 1 & 0 & 5 \\ 0 & -\frac{3}{2} & 2 & \frac{11}{2} \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 0 & -\frac{5}{2}\end{pmatrix}\end{align*}
So the eigenspace is \begin{equation*}\left \{\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \right \}\end{equation*}
Therefore the dimension of the eigenspace is $\dim \text{Eig}(2, \phi_a)=0$.

For $\lambda=3$ we have:
\begin{equation*}\begin{pmatrix}-3 & 1 & 0 & 5 \\ 1 & -3 & 2 & 3 \\ 0 & 0 & -3 & -1 \\ 0 & 0 & 1 & -3\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \end{equation*}
From Gauss algorithm we get:
\begin{align*}\begin{pmatrix}-3 & 1 & 0 & 5 \\ 1 & -3 & 2 & 3 \\ 0 & 0 & -3 & -1 \\ 0 & 0 & 1 & -3\end{pmatrix} & \ \overset{Z_2:Z_2+\frac{1}{3}\cdot Z_1}{\longrightarrow } \ \begin{pmatrix}-3 & 1 & 0 & 5 \\ 0 & -\frac{8}{3} & 2 & \frac{14}{3} \\ 0 & 0 & -3 & -1 \\ 0 & 0 & 1 & -3\end{pmatrix} \ \overset{Z_4:Z_4+\frac{1}{3}\cdot Z_3}{\longrightarrow } \ \begin{pmatrix}-3 & 1 & 0 & 5 \\ 0 & -\frac{8}{3} & 2 & \frac{14}{3} \\ 0 & 0 & -3 & -1 \\ 0 & 0 & 0 & -\frac{10}{3}\end{pmatrix}\end{align*}
So the eigenspace is \begin{equation*}\left \{\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \right \}\end{equation*}
Therefore the dimension of the eigenspace is $\dim \text{Eig}(3, \phi_a)=0$.

For $\lambda=4\equiv -1$ we have:
\begin{equation*}\begin{pmatrix}-(-1) & 1 & 0 & 5 \\ 1 & -(-1) & 2 & 3 \\ 0 & 0 & -(-1) & -1 \\ 0 & 0 & 1 & -(-1)\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}1 & 1 & 0 & 5 \\ 1 & 1 & 2 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \end{equation*}
From Gauss algorithm we get:
\begin{equation*}\begin{pmatrix}1 & 1 & 0 & 5 \\ 1 & 1 & 2 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1\end{pmatrix} \ \overset{Z_2:Z_2-Z_1}{\longrightarrow } \ \begin{pmatrix}1 & 1 & 0 & 5 \\ 0 & 0& 2 & -2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1\end{pmatrix}\ \underset{Z_4:Z_4-\frac{1}{2}\cdot Z_2}{\overset{Z_3:Z_3-\frac{1}{2}\cdot Z_2}{\longrightarrow }} \ \begin{pmatrix}1 & 1 & 0 & 5 \\ 0 & 0& 2 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2\end{pmatrix}\ \overset{Z_3\leftarrow Z_4}{\longrightarrow } \ \begin{pmatrix}1 & 1 & 0 & 5 \\ 0 & 0& 2 & -2 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}\end{equation*}
So we get the equations \begin{equation*}\begin{cases}x+y+5w=0 \\ 2z-2w=0 \\ 2w=0\end{cases} \Rightarrow \begin{cases}x=-y \\ z=0 \\ w=0\end{cases}\end{equation*}
So the eigenspace is \begin{equation*}\left \{\begin{pmatrix}-y \\ y \\ 0\\ 0\end{pmatrix} : y\in \mathbb{K}\right \}=\left \{y\cdot \begin{pmatrix}-1 \\ 1 \\ 0\\ 0\end{pmatrix} : y\in \mathbb{K}\right \}\end{equation*}
Therefore the dimension of the eigenspace is $\dim \text{Eig}(4, \phi_a)=1$.Is everything correct? :unsure:

Is didn't used now the equivalences according to $\mathbb{F}$. Do we get in that way the correct results?
 
Last edited by a moderator:
  • #10
mathmari said:
Is everything correct?

Is didn't used now the equivalences according to $\mathbb{F}$. Do we get in that way the correct results?
We do need to use the equivalences and we cannot use fractions.
Note that $\frac 12$ does not exist in $\mathbb F_2$. That is, 2 is equivalent to 0. And 0 does not have an inverse. :eek:

Consequently we get another eigenvector in $\mathbb F_2$. :oops:

It is easiest and safest to replace each element in the matrix by $0$ or $1$ and make all calculations in $\mathbb F_2$.
That is, apply that $1+1=0$ and $-1=1$.
Furthermore, no divisions, since they are not defined in $\mathbb F_p$, although we can multiply with the inverse of an element - if it exists. 🤔
 
Last edited:
  • #11
So we get for $\mathbb F_2$:
\[ \begin{pmatrix}-1 & 1 & 0 & 5 \\ 1 & -1 & 2 & 3 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1\end{pmatrix}
=\begin{pmatrix}1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1\end{pmatrix}
\ \overset{Z_2:Z_2+Z_1}{\underset{Z_4:Z_4+Z_3}\longrightarrow } \ \begin{pmatrix}1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{pmatrix}
\ \overset{Z_2 \leftrightarrow Z_3}{\longrightarrow } \ \begin{pmatrix}1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{pmatrix} \]
🤔
 
Last edited:
  • #12
Ok! Therefore we get:

- $\mathbb{K}=\mathbb{F}_2$ :

For $\lambda=1$ :
\begin{equation*}\begin{pmatrix}-1 & 1 & 0 & 5 \\ 1 & -1 & 2 & 3 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \end{equation*}
Gauss-Algorithm:
\begin{equation*}\begin{pmatrix}1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1\end{pmatrix} \ \overset{Z_2:Z_2-Z_1}{\longrightarrow } \ \begin{pmatrix}1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1\end{pmatrix}\ \overset{Z_4:Z_4- Z_3}{\longrightarrow } \ \begin{pmatrix}1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{pmatrix} \ \overset{Z_3\leftrightarrow Z_4}{\longrightarrow } \ \begin{pmatrix}1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{equation*}
So we get the equations: \begin{equation*}\begin{cases}x+y+w=0 \\ z+w=0 \end{cases} \Rightarrow \begin{cases}x=-y-w \\ z=-w \end{cases}\end{equation*}
So the eigenspace is \begin{equation*}\left \{y\cdot \begin{pmatrix}1 \\ 1 \\ 0\\ 0\end{pmatrix}+w\cdot \begin{pmatrix}-1 \\ 0 \\ -1\\ 1\end{pmatrix} : y,w\in \mathbb{K}\right \}\end{equation*}
The dimension is $\dim \text{Eig}(1, \phi_a)=2$.
- $\mathbb{K}=\mathbb{F}_3$ :

For $\lambda=1$ :
\begin{equation*}\begin{pmatrix}-1 & 1 & 0 & 5 \\ 1 & -1 & 2 & 3 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}2 & 1 & 0 & 2 \\ 1 & 2 & 2 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 1 & 2\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \end{equation*}
Gauss-Algorithm:
\begin{align*}\begin{pmatrix}2 & 1 & 0 & 2 \\ 1 & 2 & 2 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 1 & 2\end{pmatrix} & \ \overset{Z_2:Z_2+Z_1}{\longrightarrow } \ \begin{pmatrix}2 & 1 & 0 & 2 \\ 3 & 3 & 2 & 2 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 1 & 2\end{pmatrix} \longrightarrow \begin{pmatrix}2 & 1 & 0 & 2 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 1 & 2\end{pmatrix}\ \underset{Z_4:Z_4+ Z_2}{\overset{Z_3:Z_3- Z_2}{\longrightarrow }} \ \begin{pmatrix}2 & 1 & 0 & 2 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 4\end{pmatrix} \\ & \longrightarrow \begin{pmatrix}2 & 1 & 0 & 2 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{pmatrix} \ \overset{Z_3\leftrightarrow Z_4}{\longrightarrow } \ \begin{pmatrix}2 & 1 & 0 & 2 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{align*}
So we get the equations: \begin{equation*}\begin{cases}2x+y+2w=0 \\ 2z+2w=0 \\ w=0\end{cases} \Rightarrow \begin{cases}y=-x \\ z=0 \\ w=0\end{cases}\end{equation*}
So the eigenspace is \begin{equation*}\left \{x\cdot \begin{pmatrix}1 \\ 2 \\ 0\\ 0\end{pmatrix} : x\in \mathbb{K}\right \}\end{equation*}
The dimension is $\dim \text{Eig}(1, \phi_a)=1$.

For $\lambda=2$ :
\begin{equation*}\begin{pmatrix}-2 & 1 & 0 & 5 \\ 1 & -2 & 2 & 3 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 1 & -2\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}1 & 1 & 0 & 1 \\ 1 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \end{equation*}
Gauss-Algorithm:
\begin{align*}\begin{pmatrix}1 & 1 & 0 & 1 \\ 1 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1\end{pmatrix} & \ \overset{Z_2:Z_2- Z_1}{\longrightarrow } \ \begin{pmatrix}1 & 1 & 0 & 1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1\end{pmatrix}\rightarrow \begin{pmatrix}1 & 1 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1\end{pmatrix} \ \underset{Z_3:Z_3+Z_2}{\overset{Z_4:Z_4+Z_2}{\longrightarrow }} \ \begin{pmatrix}1 & 1 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 3 & 3\end{pmatrix}\longrightarrow \begin{pmatrix}1 & 1 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{align*}
So we get the equations: \begin{equation*}\begin{cases}x+y+w=0 \\ 2z+2w=0 \\ w=0\end{cases} \Rightarrow \begin{cases}y=-x \\ z=0 \\ w=0\end{cases}\end{equation*}
So the eigenspace is \begin{equation*}\left \{x\cdot \begin{pmatrix}1 \\ 2 \\ 0\\ 0\end{pmatrix} : x\in \mathbb{K}\right \}\end{equation*}
The dimension is $\dim \text{Eig}(2, \phi_a)=1$.
 
  • #13
- $\mathbb{K}=\mathbb{F}_5$ :

For $\lambda=1$ :
\begin{equation*}\begin{pmatrix}-1 & 1 & 0 & 5 \\ 1 & -1 & 2 & 3 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}4 & 1 & 0 & 0 \\ 1 & 4 & 2 & 3 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 1 & 4\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \end{equation*}
Gauss-Algorithm:
\begin{align*}\begin{pmatrix}4 & 1 & 0 & 0 \\ 1 & 4 & 2 & 3 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 1 & 4\end{pmatrix}& \ \overset{Z_2:Z_2+Z_1}{\longrightarrow } \ \begin{pmatrix}4 & 1 & 0 & 0 \\ 5 & 5 & 2 & 3 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 1 & 4\end{pmatrix} \longrightarrow \begin{pmatrix}4 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 1 & 4\end{pmatrix}\ \underset{Z_4:Z_4+2\cdot Z_2}{\overset{Z_3:Z_3+3\cdot Z_2}{\longrightarrow }} \ \begin{pmatrix}4 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 10 & 13 \\ 0 & 0 & 5 & 10\end{pmatrix} \\ & \longrightarrow \begin{pmatrix}4 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0\end{pmatrix} \end{align*}
So we get the equations: \begin{equation*}\begin{cases}4x+y=0 \\ 2z+3w=0 \\ 3w=0\end{cases} \Rightarrow \begin{cases}y=-4x \\ z=0 \\ w=0\end{cases}\Rightarrow \begin{cases}y=x \\ z=0 \\ w=0\end{cases}\end{equation*}
So the eigenspace is \begin{equation*}\left \{x\cdot \begin{pmatrix}1 \\ 1 \\ 0\\ 0\end{pmatrix} : x\in \mathbb{K}\right \}\end{equation*}
The dimension is $\dim \text{Eig}(1, \phi_a)=1$.

For $\lambda=2$ :
\begin{equation*}\begin{pmatrix}-2 & 1 & 0 & 5 \\ 1 & -2 & 2 & 3 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 1 & -2\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}3 & 1 & 0 & 0 \\ 1 & 3 & 2 & 3 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 3\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \end{equation*}
Gauss-Algorithm:
\begin{align*}\begin{pmatrix}3 & 1 & 0 & 0 \\ 1 & 3 & 2 & 3 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 3\end{pmatrix} & \ \overset{Z_2:Z_2+3\cdot Z_1}{\longrightarrow } \ \begin{pmatrix}3 & 1 & 0 & 0 \\ 10 & 6 & 2 & 3 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 3\end{pmatrix} \longrightarrow \begin{pmatrix}3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 3\end{pmatrix} \ \overset{Z_4:Z_4+3\cdot Z_3}{\longrightarrow } \ \begin{pmatrix}3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 10 & 15\end{pmatrix} \\ & \longrightarrow \begin{pmatrix}3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{align*}
So we get the equations: \begin{equation*}\begin{cases}3x+y=0 \\ y+2z+3w=0 \\ 3z+4w=0\end{cases} \ldots\Rightarrow \begin{cases}y=2x \\ z=3x \\ w=4x\end{cases}\end{equation*}
So the eigenspace is \begin{equation*}\left \{x\cdot \begin{pmatrix}1 \\ 2 \\ 3\\ 4\end{pmatrix} : x\in \mathbb{K}\right \}\end{equation*}
The dimension is $\dim \text{Eig}(2, \phi_a)=1$.

For $\lambda=3$ :
\begin{equation*}\begin{pmatrix}-3 & 1 & 0 & 5 \\ 1 & -3 & 2 & 3 \\ 0 & 0 & -3 & -1 \\ 0 & 0 & 1 & -3\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}2 & 1 & 0 & 0 \\ 1 & 2 & 2 & 3 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 1 & 2\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \end{equation*}
Gauss-Algorithm:
\begin{align*}\begin{pmatrix}2 & 1 & 0 & 0 \\ 1 & 2 & 2 & 3 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 1 & 2\end{pmatrix} & \ \overset{Z_2:Z_2+2\cdot Z_1}{\longrightarrow } \ \begin{pmatrix}2 & 1 & 0 & 0 \\ 5 & 4 & 2 & 3 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 1 & 2\end{pmatrix} \longrightarrow \begin{pmatrix}2 & 1 & 0 & 0 \\ 0 & 4 & 2 & 3 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 1 & 2\end{pmatrix} \ \overset{Z_4:Z_4+2\cdot Z_3}{\longrightarrow } \ \begin{pmatrix}2 & 1 & 0 & 0 \\ 0 & 4 & 2 & 3 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 5 & 10\end{pmatrix} \\ & \longrightarrow \begin{pmatrix}2 & 1 & 0 & 0 \\ 0 & 4 & 2 & 3 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{align*}
So we get the equations: \begin{equation*}\begin{cases}2x+y=0 \\ 4y+2z+3w=0 \\ 2z+4w=0\end{cases} \ldots \Rightarrow \begin{cases}y=3z \\ x=z \\ w=2z\end{cases}\end{equation*}
So the eigenspace is \begin{equation*}\left \{z\cdot \begin{pmatrix}1 \\ 3 \\ 1\\ 2\end{pmatrix} : z\in \mathbb{K}\right \}\end{equation*}
The dimension is $\dim \text{Eig}(3, \phi_a)=1$.

For $\lambda=4$ :
\begin{equation*}\begin{pmatrix}-4 & 1 & 0 & 5 \\ 1 & -4 & 2 & 3 \\ 0 & 0 & -4 & -1 \\ 0 & 0 & 1 & -4\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \Rightarrow \begin{pmatrix}1 & 1 & 0 & 0 \\ 1 & 1 & 2 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 1\end{pmatrix}\begin{pmatrix}x \\ y \\ z\\ w\end{pmatrix}=\begin{pmatrix}0 \\ 0 \\ 0\\ 0\end{pmatrix} \end{equation*}
Gauss-Algorithm:
\begin{align*}\begin{pmatrix}1 & 1 & 0 & 0 \\ 1 & 1 & 2 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 1\end{pmatrix} \ & \overset{Z_2:Z_2-Z_1}{\longrightarrow } \ \begin{pmatrix}1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 1\end{pmatrix}\ \underset{Z_4:Z_4+2\cdot Z_2}{\overset{Z_3:Z_3+2\cdot Z_2}{\longrightarrow }} \ \begin{pmatrix}1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 5 & 10 \\ 0 & 0 & 5 & 7\end{pmatrix} \longrightarrow \begin{pmatrix}1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2\end{pmatrix}\\ & \ \overset{Z_3\leftarrow Z_4}{\longrightarrow } \ \begin{pmatrix}1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0\end{pmatrix}\end{align*}
So we get the equations \begin{equation*}\begin{cases}x+y=0 \\ 2z+3w=0 \\ 2w=0\end{cases} \Rightarrow \begin{cases}x=4y \\ z=0 \\ w=0\end{cases}\end{equation*}
So the eigenspace is \begin{equation*}\left \{y\cdot \begin{pmatrix}4 \\ 1 \\ 0\\ 0\end{pmatrix} : y\in \mathbb{K}\right \}\end{equation*}
The dimension is $\dim \text{Eig}(4, \phi_a)=1$.
Is everything correct? :unsure:

For the second question shouldn't the basis $B$ consist of the eigenvectors of $\phi_a$ ? :unsure:
 
  • #14
mathmari said:
- $\mathbb{K}=\mathbb{F}_3$ :

So the eigenspace is \begin{equation*}\left \{x\cdot \begin{pmatrix}1 \\ 2 \\ 0\\ 0\end{pmatrix} : x\in \mathbb{K}\right \}\end{equation*}
The dimension is $\dim \text{Eig}(1, \phi_a)=1$.

So the eigenspace is \begin{equation*}\left \{x\cdot \begin{pmatrix}1 \\ 2 \\ 0\\ 0\end{pmatrix} : x\in \mathbb{K}\right \}\end{equation*}
The dimension is $\dim \text{Eig}(2, \phi_a)=1$.

It can't be that both eigenvalues have the same eigenspace, can't it? (Worried)
Do those eigenvectors actually satisfy the relation $av=\lambda v$?

mathmari said:
- $\mathbb{K}=\mathbb{F}_5$ :

Is everything correct?
Looks about correct, although I didn't check it carefully.
Either way, since all 4 eigenvalues are distinct, each of them must also have a distinct eigenvector.
Since the dimension of the vector space is 4, that implies that each eigenvalue has an eigenspace of dimension 1, which is what you found as well.
So the result with the dimensions of the eigenspaces is correct. (Nod)

mathmari said:
For the second question shouldn't the basis $B$ consist of the eigenvectors of $\phi_a$ ?
Yes.
And it can only be a basis if we have 4 independent eigenvectors. 🤔
 
  • #15
Klaas van Aarsen said:
It can't be that both eigenvalues have the same eigenspace, can't it? (Worried)
Do those eigenvectors actually satisfy the relation $av=\lambda v$?

I found a typo. The first one, for $\lambda=1$ it is $\left \{x\cdot \begin{pmatrix}1 \\ 1 \\ 0\\ 0\end{pmatrix} : x\in \mathbb{K}\right \}$.
Klaas van Aarsen said:
Yes.
And it can only be a basis if we have 4 independent eigenvectors. 🤔

So do we consider $\mathbb{K}=\mathbb{F}_5$ and the basis consists of the vectors $\begin{pmatrix}1 \\ 1 \\ 0\\ 0\end{pmatrix}$, $\begin{pmatrix}1 \\ 2 \\ 3\\ 4\end{pmatrix}$, $\begin{pmatrix}1 \\ 3 \\ 1\\ 2\end{pmatrix}$, $\begin{pmatrix}4 \\ 1 \\ 0\\ 0\end{pmatrix}$ ? :unsure:
 
  • #16
mathmari said:
I found a typo. The first one, for $\lambda=1$ it is $\left \{x\cdot \begin{pmatrix}1 \\ 1 \\ 0\\ 0\end{pmatrix} : x\in \mathbb{K}\right \}$.

So do we consider $\mathbb{K}=\mathbb{F}_5$ and the basis consists of the vectors $\begin{pmatrix}1 \\ 1 \\ 0\\ 0\end{pmatrix}$, $\begin{pmatrix}1 \\ 2 \\ 3\\ 4\end{pmatrix}$, $\begin{pmatrix}1 \\ 3 \\ 1\\ 2\end{pmatrix}$, $\begin{pmatrix}4 \\ 1 \\ 0\\ 0\end{pmatrix}$ ?
Yes and yes. (Nod)
 

What is the spectrum of φ - Eigenspace?

The spectrum of φ - Eigenspace refers to the set of all possible eigenvalues of the linear operator φ, along with their corresponding eigenvectors. It is a fundamental concept in linear algebra and is used to analyze the behavior of linear transformations.

How is the spectrum of φ - Eigenspace related to eigenvalues and eigenvectors?

The eigenvalues of φ are the elements of the spectrum, while the eigenvectors are the corresponding elements of the eigenspace. This means that for each eigenvalue, there exists an eigenvector that, when multiplied by φ, results in a scalar multiple of itself.

Can the spectrum of φ - Eigenspace be empty?

Yes, it is possible for the spectrum of φ - Eigenspace to be empty. This occurs when the linear operator φ has no eigenvalues, meaning that there are no vectors that, when multiplied by φ, result in a scalar multiple of themselves.

How is the spectrum of φ - Eigenspace calculated?

The spectrum of φ - Eigenspace can be calculated by finding the roots of the characteristic polynomial of φ. This polynomial is obtained by setting the determinant of (φ - λI) equal to zero, where λ is the eigenvalue and I is the identity matrix. The resulting eigenvalues are then used to find the corresponding eigenvectors.

What is the significance of the spectrum of φ - Eigenspace?

The spectrum of φ - Eigenspace provides important information about the behavior of linear transformations. It can be used to determine the stability of a system, the rate of convergence of iterative algorithms, and the diagonalizability of a matrix. It is also closely related to other concepts such as the Jordan canonical form and spectral decomposition.

Similar threads

  • Linear and Abstract Algebra
Replies
4
Views
981
  • Linear and Abstract Algebra
Replies
8
Views
1K
  • Linear and Abstract Algebra
Replies
8
Views
1K
  • Linear and Abstract Algebra
Replies
6
Views
847
  • Linear and Abstract Algebra
Replies
3
Views
1K
  • Linear and Abstract Algebra
Replies
8
Views
2K
  • Linear and Abstract Algebra
Replies
10
Views
980
  • Linear and Abstract Algebra
Replies
10
Views
1K
  • Linear and Abstract Algebra
Replies
10
Views
2K
  • Linear and Abstract Algebra
Replies
3
Views
2K
Back
Top