Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Spherical coordinates.

  1. Jan 31, 2012 #1
    1. The problem statement, all variables and given/known data
    (a) For spherical coordinates, show that [itex]\hat{\theta}[/itex] points along the negative z-axis if [itex]\theta[/itex] = 90°.
    (b) If [itex]\phi[/itex] also equals 90°, in what direction are [itex]\hat{r}[/itex] and [itex]\hat{\phi}[/itex]?

    2. Relevant equations

    3. The attempt at a solution

    can i just explain this in words.. like

    for a.
    since we are rotating about the z axis , if theta is 90°, theta will automatically point to negative z-axis
    Last edited: Jan 31, 2012
  2. jcsd
  3. Jan 31, 2012 #2
    Can someone help me with this one?? I'm really having a problem solving this.
  4. Jan 31, 2012 #3


    User Avatar
    Science Advisor
    Gold Member

    You'll probably need to express these coordinate vectors as functions of r,theta, phi or at least parallel vectors. That is take the partial derivative of the position vector [itex]\vec{r}[/itex] with respect to theta and plug in theta = 90deg, likewise with (b).
  5. Jan 31, 2012 #4
    ... is that something like this??

    [itex]\frac{\partial \hat{r}}{\partial \hat{\theta}}[/itex] = r cos [itex]\phi[/itex][itex]\frac{\partial sin \theta}{\partial {\theta}}[/itex] [itex]\hat{i}[/itex] + r sin [itex]\phi[/itex] [itex]\frac{\partial sin \theta}{\partial {\theta}}[/itex] [itex]\hat{j}[/itex] + r [itex]\frac{\partial cos \theta}{\partial {\theta}}[/itex] [itex]\hat{k}[/itex]

    = [itex] r cos \phi (cos \theta) \hat{i} + r sin \phi cos \theta \hat{j} - r sin \theta \hat{k} [/itex]

    so if i plug in 90° only -r[itex]\hat{k}[/itex] will be left since cos 90° = 0

    how thus that prove anything?
  6. Jan 31, 2012 #5


    User Avatar
    Science Advisor
    Gold Member

    ? ? ? It shows the intended conclusion. [tex]\vec{\theta} = \frac{\partial \vec{r}}{\partial \theta}[/tex]
    [tex] \hat{\theta} = \frac{\vec{\theta}}{|\vec{\theta}|} = -\hat{k}[/tex] at [itex]\theta=90^o[/itex].
  7. Jan 31, 2012 #6
    ow.. hahahaha.. I don't know that equation.. hahaha! i mean i know an equation something like that but we only use it to get unit vector.. Is that similar? Thanks for the help :)))) much appreciated
  8. Jan 31, 2012 #7


    User Avatar
    Science Advisor
    Gold Member

    Yes, in general coordinates, say (u,v,w) you can define the local unit vectors [itex]\hat{u},\hat{v},\hat{w}[/itex] as the unit vectors in the directions of increase of the corresponding coordinate. They will be what you get when you normalize each of:
    [tex] \frac{\partial \vec{r}}{\partial u}, \frac{\partial \vec{r}}{\partial v},\text{ and }\frac{\partial \vec{r}}{\partial w}.[/tex]

    Note these unit vectors vary with coordinates so be careful when differentiating vectors expressed in terms of these. Also for general coordinates don't assume they are orthogonal to each other. However cylindrical, polar, and spherical coordinates are orthogonal coordinate systems so in these cases you do get a local orthonormal basis.
  9. Jan 31, 2012 #8
    last question.. you can just answer yes or no.

    for cylindrical coordinates if i'm looking for the direction of [itex]\hat{r}[/itex] should i do

    [itex]\frac{\partial \hat{r}}{\partial \rho}[/itex] then normalize??? like what i did earlier?
    Last edited: Jan 31, 2012
  10. Jan 31, 2012 #9


    User Avatar
    Science Advisor
    Gold Member

    Yes, but understand in the context of the problem whether you are being asked to find the unit coordinate vector or the normalized position vector. That is to say the coordinate vector is the unit vector pointing away from the z axis while the normalized position vector always points away from the origin in any coordinate system.

    Since we use [itex]\vec{r}[/itex] for the position vector even when we aren't using cylindrical or polar coordinates the notation can be ambiguous. That's why sometimes we write [itex]\hat{\mathbf{e}}_r[/itex] instead of [itex]\hat{r}[/itex] (and likewise for other coordinates) to indicate the unit vector in the direction of increasing coordinate.
  11. Jan 31, 2012 #10
    I didn't want to take much of your time... but thanks for explaining further.. I understand it better now! Thank you so much! :))))
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook