Spherical Harmonics

  • Thread starter docnet
  • Start date
  • #1
docnet
Gold Member
386
179
Homework Statement:
psb
Relevant Equations:
psb
Screen Shot 2021-02-20 at 12.16.10 AM.png

To show ##Y_{1,1}(\theta,\phi)## is an eigenfunction of ##\hat{L}^2## we operate on ##Y_{1,1}(\theta,\phi)## with ##\hat{L}^2##
\begin{equation}
\hat{L}^2Y_{1,1}(\theta,\phi)=\hat{L}^2\Big(-\sqrt{{\frac{3}{8\pi}}}sin\theta e^{i\phi}\Big)
\end{equation}
\begin{equation}
=-\hbar^2\Big[\frac{1}{sin\theta}\frac{\partial}{\partial\theta}\Big(sin\theta\frac{\partial}{\partial\theta}\Big(-\sqrt{{\frac{3}{8\pi}}}sin\theta e^{i\phi}\Big)\Big)+\frac{1}{sin^2\theta}\frac{\partial^2}{\partial\phi^2}\Big(-\sqrt{{\frac{3}{8\pi}}}sin\theta e^{i\phi}\Big)\Big]
\end{equation}

\begin{equation}
=\hbar^2\sqrt{{\frac{3}{8\pi}}}\Big[ \frac{1}{sin\theta}\frac{\partial}{\partial\theta}\Big(sin\theta cos\theta\Big)e^{i\phi}+\frac{1}{sin\theta}\frac{\partial^2}{\partial\phi^2}e^{i\phi}\Big]
\end{equation}
\begin{equation}
=\hbar^2\sqrt{{\frac{3}{8\pi}}}\Big[\frac{1}{sin\theta}(cos^2\theta-sin^2\theta)-\frac{1}{sin\theta}\Big]e^{i\phi}
\end{equation}
\begin{equation}
=\hbar^2\sqrt{{\frac{3}{8\pi}}}\Big[\frac{cos^2\theta-sin^2\theta-1}{sin\theta}\Big]e^{i\phi}
\end{equation}
\begin{equation}
\hat{L}^2Y_{1,1}(\theta,\phi)=2\hbar^2\Big(-\sqrt{{\frac{3}{8\pi}}}sin\theta e^{i\phi}\Big)=2\hbar^2Y_{1,1}(\theta,\phi)
\end{equation}
so ##Y_{1,1}(\theta,\phi)## is an eigenfunction of ##\hat{L}^2## with a corresponding eigenvalue of ##2\hbar^2##. Next we work out how ##\hat{L_z}## operates on ##Y_{1,1}(\theta,\phi)##
\begin{equation}
\hat{L_z}Y_{1,1}(\theta,\phi)=-i\hbar\frac{\partial}{\partial\phi}(-\sqrt{{\frac{3}{8\pi}}}sin\theta e^{i\phi})
\end{equation}
\begin{equation}
=i\hbar\sqrt{{\frac{3}{8\pi}}}sin\theta\frac{\partial}{\partial\phi}e^{i\phi}=\hbar\Big(-\sqrt{{\frac{3}{8\pi}}}sin\theta e^{i\phi}\Big)=\hbar Y_{1,1}(\theta,\phi)
\end{equation}
and we find that ##Y_{1,1}(\theta,\phi)## is an eigenfunction of ##\hat{L_z}## with a corresponding eigenvalue of ##\hbar##.
 
  • Like
Likes vanhees71 and PeroK

Answers and Replies

  • #2
kuruman
Science Advisor
Homework Helper
Insights Author
Gold Member
10,684
3,709
This is all correct, nice job. A minor point is that (2)-(5) are not separate equations. Usually, equations are numbered only if it is necessary to refer to them in the text. Numbered equations are usually "bottom lines" after all the algebraic manipulation has been completed.
 
  • #3
docnet
Gold Member
386
179
This is all correct, nice job. A minor point is that (2)-(5) are not separate equations. Usually, equations are numbered only if it is necessary to refer to them in the text. Numbered equations are usually "bottom lines" after all the algebraic manipulation has been completed.
that is a great and valid point that I will be sure to remember on my next assignment. Thank you
 
  • Like
Likes PhDeezNutz and kuruman

Related Threads on Spherical Harmonics

  • Last Post
Replies
5
Views
889
  • Last Post
Replies
3
Views
3K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
0
Views
2K
  • Last Post
Replies
1
Views
822
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
4
Views
865
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
1
Views
1K
Top