For an electron in an arbitrary spin state, can an axis always be found along which the spin is 1/2 (as opposed to a superposition of 1/2 and -1/2 spins)? What about particles whose spin is 1 or greater? For example, for a spin 1 particle which is in an arbitrary spin state, can one always find an axis along which the spin is either 1 or 0. Or is it possible for a spin 1 particle to be in such a state that it's spin is a superposition of spin 1,0,-1 states along(adsbygoogle = window.adsbygoogle || []).push({}); everyaxis? Moving on to angular momentum, if an electron in a hydrogen atom is in the n=2, l=1 state and in a superposition: a|1>+b|0>+c|-1> where |1>, |0>, |-1> are the eigenstates of L sub z, and a,b,c are arbitrary constants, can one always find an axis along which the angular momentum has adefinitevalue (either 1, 0, or -1) and is not a superposition of states? (I assume that whatever is true for a spin 1 particle is also true for the n=2, l=1 state of the H atom).

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Spin/angular momentum question

Loading...

Similar Threads for Spin angular momentum |
---|

I Electron spin |

I Spin Angular Momentum Dirac Equation |

A Equation in a paper about Dicke states |

I Macroscopic rotation from spin flipping? |

I Spin confusion: Stern-Gerlach experiment |

**Physics Forums | Science Articles, Homework Help, Discussion**