- #1

Inquisiter

- 21

- 0

*every*axis? Moving on to angular momentum, if an electron in a hydrogen atom is in the n=2, l=1 state and in a superposition: a|1>+b|0>+c|-1> where |1>, |0>, |-1> are the eigenstates of L sub z, and a,b,c are arbitrary constants, can one always find an axis along which the angular momentum has a

*definite*value (either 1, 0, or -1) and is not a superposition of states? (I assume that whatever is true for a spin 1 particle is also true for the n=2, l=1 state of the H atom).