# Spin-parity of two photons

I am trying to understand how charmonium states can be produced in electron-positron collisions, and which quantum numbers are possible for each process. I am having trouble understanding the quantum numbers that are possible for the two-photon process, e+e- → e+e- γγ → e+e- cc̅.

I have read in several places [1-3] that the C-parity for the final states from these reactions must be +1. This I get, since both photons have C-parity -1. However, JP seems to be restricted to 0±, 2±, 3+, 4±, 5+, ... This I don't get.

The spins of the two photons couple to 0 or 2, correct? I tried to come up with allowed quantum numbers by assuming different orbital angular momenta, starting from 0, and then trying to combine them (somewhat naively) with the 0/2 state. I tried to get the final state's parity using (-1)(-1)(-1)L. Obviously, this leads to completely different values, including, for example, JPC=1++.

What would be the right way to understand the allowed quantum numbers? Is it possible to calculate them in such a simplistic way?

[1] http://www-conf.kek.jp/qwg08/session3_3/uehara.pdf
[2] http://inspirehep.net/record/1257857/files/Beauty 2013_048.pdf
[3] http://arxiv.org/pdf/1311.0968v1

Last edited: