# Spin via Change of Phase

1. Sep 17, 2014

### bolbteppa

Thinking of spin as arising from a change in the phase of a wave function:
Is it possible to see the existence of spin using the quasi-classical wave function $\psi (\vec{r}) = e^{iS/\hbar}$? If the action being invariant under a rotation gives angular momentum then $\psi$ should remain as $\psi$ yet the quote above seems to be saying that $\psi (\vec{r}) = e^{i(S+\lambda \hbar)/\hbar} = Ae^{iS/\hbar}$ can happen, furthermore it can happen in two ways (which I do not see, e.g. I do not see how this form expresses mixing up components of the wave function).

If there is a nice way to see this, perhaps one can also somehow understand spin, when thought of as arising from Lorentz invariance, if you think of the Lorentz group as being generated by unitary operators $T = \Pi_{\mu} e^{s_{\mu}K_{\mu}} = e^{\sum _{\mu} s_{\mu}K_{\mu}}$ and somehow see this as like the phase of the wave: $T \psi = \Pi_{\mu} e^{s_{\mu}K_{\mu}} \psi = Ae^{iS/\hbar} = \psi (\vec{r})$, if that makes sense?

Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted