- #1

- 775

- 1

## Main Question or Discussion Point

At first I thought that there is no square matrix whose square is the 0 matrix. But I found a counterexample to this. My counterexample is:

[tex]\left( \begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right)[/tex]

However it appears that my counterexample has a 0 row. I'm curious, must a square root of the 0 matrix necessarily have at least one 0 row (or 0 column)?

BiP

[tex]\left( \begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right)[/tex]

However it appears that my counterexample has a 0 row. I'm curious, must a square root of the 0 matrix necessarily have at least one 0 row (or 0 column)?

BiP