1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Squared Quantum Runge Lenz Vector

  1. Nov 12, 2013 #1
    1. The problem statement, all variables and given/known data
    [itex]\mathbf{A} = \frac{1}{2}\left(\hbar\mathbf{L} \times \mathbf{p} \right) - \frac{1}{2}\left(\mathbf{p} \times \hbar\mathbf{L} \right) + Ze^2m \frac{\mathbf{r}}{r} [/itex]

    [itex]\mathbf{A}^2 = \left(\mathbf{p}^2 - 2m\frac{Ze^2}{r} \right)\left(\hbar^2 \mathbf{L^2} + \hbar^2 \right) + m^2Z^2e^4 [/itex]

    2. Relevant equations
    [itex]\left(\mathbf{X} \times \mathbf{Y} \right)_i = \epsilon_{ijk}X_jY_k[/itex]
    [itex]\left[L_i, p_j \right] = \epsilon_{ijk}p_k[/itex]
    [itex]\sum_i \epsilon_{ijk}\epsilon_{i\ell m} = \delta_{j\ell } \delta_{km} -\delta_{jm} \delta_{k\ell }[/itex]

    3. The attempt at a solution
    I found that
    [itex]-\left(\mathbf{p} \times \mathbf{L} \right)_i = \left(\mathbf{L} \times \mathbf{p} \right)_i^\dagger = \left(\mathbf{L} \times \mathbf{p} \right)_i - 2p_i [/itex]

    So another way to write A

    [itex]\mathbf{A} =-\hbar\mathbf{p} \times \mathbf{L} +\hbar \mathbf{p} + Ze^2m \frac{\mathbf{r}}{r} [/itex]

    My attempt ( [itex]\left\{\;,\;\right\}[/itex] indicates anti-commuator with dot product)

    [itex]\mathbf{A} ^2 = \left(-\hbar\mathbf{p} \times \mathbf{L} + \hbar\mathbf{p} + Ze^2m \frac{\mathbf{r}}{r}\right)\left(-\hbar\mathbf{p} \times \mathbf{L} + \hbar\mathbf{p} + Ze^2m \frac{\mathbf{r}}{r}\right)[/itex]
    [tex]=\hbar^2\left(\mathbf{p} \times \mathbf{L}\right)^2 + \hbar^2\mathbf{p}^2 -\hbar^2\left\{\mathbf{p} \times \mathbf{L}, \mathbf{p}\right\} - \hbar Ze^2m\left\{\mathbf{p} \times \mathbf{L}, \frac{\mathbf{r}}{r}\right\} + \hbar Ze^2m\left\{ \mathbf{p}, \frac{\mathbf{r}}{r}\right\} + m^2Z^2e^4[/tex]
    Now I get that
    \begin{align*}\left(\mathbf{p} \times \mathbf{L}\right)^2 &= \epsilon_{ijk}\epsilon_{i\ell m}p_jL_kp_\ell L_m = \left(\delta_{j\ell} \delta_{km} -\delta_{jm} \delta_{k\ell} \right)p_jL_kp_\ell L_m \\
    &= p_jL_kp_j L_k - p_jL_kp_k L_j\end{align*}
    [itex]\left[L_k, p_j\right] = \epsilon_{kj\ell}p_\ell =\epsilon_{j\ell k}p_\ell [/itex]

    \begin{align*}\left(\mathbf{p} \times \mathbf{L}\right)^2 &= p_j(p_jL_k + \epsilon_{j\ell k}p_\ell)L_k - p_jp_kL_k L_j\\ &= \mathbf{p}^2 \mathbf{L}^2 + \mathbf{p} \cdot \left(\mathbf{p} \times \mathbf{L} \right) - p_jp_kL_k L_j\end{align*}

    So if I do it this way, at least I get the [itex] \mathbf{p}^2 \mathbf{L}^2 [/itex] term without too much effort. And I see the second term is going to cancel with part of the anti-commutator [itex]\left\{\mathbf{p} \times \mathbf{L}, \mathbf{p}\right\}[/itex]. But I am not sure what to do with the third term, or how the other half of that anti-commutator would go away. I am not sure if this is the right approach and perhaps I have made a mistake. I'd appreciate any help with this problem.
    Last edited: Nov 12, 2013
  2. jcsd
  3. Nov 15, 2013 #2
    Hi MisterX!

    You missed an [itex]i[/itex] in one of your commutation relations:

    [itex]\left[L_i, p_j \right] = i\epsilon_{ijk}p_k[/itex]

    Then things should work out ok. Also note that

    [itex]\mathbf{p} \cdot \left(\mathbf{p} \times \mathbf{L} \right) = 0[/itex]


    [itex] - p_jp_kL_k L_j = 0.[/itex]
  4. Nov 16, 2013 #3
    Thanks, however I already found out those things (and solved this problem after a significant amount of work).

    Perhaps somewhere we should have a catalog of vector calculus identities for vectors of quantum mechanical operators.

    [itex]\mathbf{p} \cdot \left(\mathbf{p} \times \mathbf{L} \right) = 0[/itex]
    [itex]\left(\mathbf{p} \times \mathbf{L} \right) \cdot \mathbf{p} =i2\mathbf{p}^2[/itex]
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted