I have a star-shaped geometry described by following parametric equation:(adsbygoogle = window.adsbygoogle || []).push({});

\begin{equation}

\gamma(\theta) = 1 + 0.5 \times \cos (10 \theta) (\cos(\theta),\sin(\theta), 0 \leq \theta \leq 2 \pi \

\end{equation}

Thus, \gamma (1) = x - coordinate and \gamma (2) = y - coordinate of the point on the star - shaped geometry.

When plotted, one can see that the number 10 in above equation results in 10 lobes. So this is a 10 lobed star. The question is how to find the θ values for the points where the lobes are "exactly" bisected. I tried to plot above equation for a total 10 values of calculated as follows -

θ ( lobe_number ) = 2 \pi - lobe_number × Segtheta, ... (2)

where Segtheta is the angle between the lines bisecting the lobes exactly. Clearly, in this case, Segtheta = 2 \pi / 10, 10 being the total number of lobes. I am surprised to see that these points do not lie on the line bisecting the lobes (see attached figures). How do I find the theta values at the midpoints? I know I can always check the (x,y) data and do a tan inverse but I need an equation which gives me these values exactly / analytically.

Many thanks for help.

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Star shaped object

Loading...

Similar Threads - Star shaped object | Date |
---|---|

A About diagonalisation of shape operators | Apr 22, 2016 |

I Shape defined by x∈ℂ^3 and x⋅x = 0. | Mar 6, 2016 |

A technical question that has to do with Hodge Star | Apr 19, 2015 |

Hodge Star Operator | Jul 21, 2014 |

Star Operator | Dec 22, 2006 |

**Physics Forums - The Fusion of Science and Community**