Starless Galaxies?

  • Thread starter ohwilleke
  • Start date

SpaceTiger

Staff Emeritus
Science Advisor
Gold Member
2,931
2
RoboSapien said:
And why not non observable ? What if the radiation is not EM at all ?
Perhaps it's a possibility, but it requires even more arbitrary assumptions than the normal dark matter model (such as new physics), so I don't think it would be taken seriously.
 
63
0
Is it not completely obvious to anyone that what this is talking about is a blackhole? Oh my god. Galaxy? Starless Galaxy? Holy crap you got to be kidding me.

-Hydrogen gas rotating around a central point
-The whole thing is X times more massive than what can be accounted for by the hyrogen alone, gee I wonder why, could there be a blackhole? Oh ya duh. Maybe thats why its rotating? "Shush! dont tell anyone were so eager to make a new discovery I wonder if people will buy it?"
 
389
0
you have no idea. do you think you are smarter than the people who wrote the paper? do you think they didn't consider this. sheesh, some people...
 
matt.o said:
you have no idea. do you think you are smarter than the people who wrote the paper? do you think they didn't consider this. sheesh, some people...
We need people like U here, U r the man.
 

SpaceTiger

Staff Emeritus
Science Advisor
Gold Member
2,931
2
tdunc said:
-The whole thing is X times more massive than what can be accounted for by the hyrogen alone, gee I wonder why, could there be a blackhole?
If this galaxy's mass were dominated by a single, massive black hole, it would imply the existence of an alternative gravity model other than MOND, which is designed to make luminous matter create the rotation curves. In Newtonian/Einsteinian gravity, the rotation curve around a black hole wouldn't be flat at large distances.
 
63
0
I don't follow you on the luminous matter thing. So are you saying matter that is equally massive yet does not emit light per say would not achieve the same effect?
Also the rotation curve around a black hole Would Absolutly be Flatter at larger distances...
 

SpaceTiger

Staff Emeritus
Science Advisor
Gold Member
2,931
2
tdunc said:
I don't follow you on the luminous matter thing. So are you saying matter that is equally massive yet does not emit light per say would not achieve the same effect?
The rotation curve depends on the mass as a function of radius. MOND is designed to make it so that we can simply say that the amount of mass is proportional to the amount of light we see and still reproduce the shapes of observed rotation curves. Black holes have basically a delta function mass profile (it's all at the center), so this isn't the same thing.


Also the rotation curve around a black hole Would Absolutly be Flatter at larger distances...
In Newtonian/Einsteinian gravity, the rotation curve would go as:

[tex]v=\sqrt{\frac{GM}{r}}[/tex]

a large distance from the black hole. This isn't flat.
 
63
0
I read the paper a second time, what they are really talking about is the discovery of a Dark Matter Halo, not a galaxy per say which would be contained within that halo. A halo is supposedly around every galaxy to explain for the flat rotation curve. Basically the rotation of stars are not what they think they should be according to gravitational tides from a central blackhole and visible stars alone, so they introduce a halo a very large distance from the edge of the galaxy itself to explain why the stars near the outter edges are rotating so fast - effectivly giving a flat rotation curve. Personally I still dont understand the dynamics of how that would be.

First of all what is a rotation curve? Here is a diagram Fig.2 with a short description.
http://en.wikipedia.org/wiki/MOND

Fig.3 is shows where the Dark matter halo would be.

MOND attempts to do away with the need for a Dark matter halo and explain the flat rotation curve by a modification to Newtons 2nd law of motion which gives a change to acceleration in situations where very large distances between bodies are present therefore the effects of gravitational pull are lower overall than say here on Earth or around our Solar system.

Have I got this right?

SpaceTiger
"a large distance from the black hole. This isn't flat."
I still do not know why you would say this. Every galaxy has a blackhole at the center, it is known the rotation curve a "large distance from the blackhole" remains flat to the outter edges. What do you consider a large distance from center? I would say a 3rd maybe 4th from the center, that is well within the range of the observed flat rotation curve. In MOND theory "Consequently, the velocity of stars on a circular orbit far from the center is a constant, and doesn't depend on the distance r: the rotation curve is flat."

But thats not quite relevent now, also I dont recall anything said in the paper about such rotation curvature, whether is would be flat or not the point is mute because the paper is about the exsistence of the halo not the exsistence of the galaxy which is what you need to have in order to observe said rotation curve. Of course I might have missed that if they mentioned it with regards to the hydrogen that is located where the galaxy should be, and its rotation, but that doesnt make much sense because rotation of stars and rotation of an isotropic hydrogen are two different dynamics.

In any case I guess I'm still not convinced a blackhole is not or could not be there for the sake of argument. Or even that what they have discovered is a Dark Matter halo which are up to this point as it would seem somewhat theoretical.
 

SpaceTiger

Staff Emeritus
Science Advisor
Gold Member
2,931
2
tdunc said:
Personally I still dont understand the dynamics of how that would be.
One simple way to produce a flat rotation curve is with a simple isothermal sphere mass profile:

[tex]\rho \propto \frac{1}{r^2}[/tex]

We used this as a fit to galaxy dark matter profiles for a long time, but recent evidence indicates that it's not quite as simple as that. We need another parameter to fit the observed velocity profiles.


Have I got this right?
Everything you've said up to this point looks right.


"a large distance from the black hole. This isn't flat."
I still do not know why you would say this. Every galaxy has a blackhole at the center, it is known the rotation curve a "large distance from the blackhole" remains flat to the outter edges.
Your theory, as I understood it, was that black hole was itself causing these motions. Current theory says that's not the case anywhere except very close to the black hole. The two observations you cite are roughly accurate, but they are not related to one another. Even just the luminous matter in a galaxy is several orders of magnitude more massive the central black hole.


In MOND theory "Consequently, the velocity of stars on a circular orbit far from the center is a constant, and doesn't depend on the distance r: the rotation curve is flat."
I didn't realize you were using MOND to make that statement. In MOND, you're right that the rotation curve would be flat a large distance from a central black hole. However, if you assume the mass is entirely in a central black hole and use MOND, then the rotation curve you get will be monotonically decreasing, with a Newtonian dependence at the center and flatness at the outskirts. This is not what we observe. In fact, the rotation curve increases from the center of the galaxy and then becomes flat on the outskirts.


In any case I guess I'm still not convinced a blackhole is not or could not be there for the sake of argument. Or even that what they have discovered is a Dark Matter halo which are up to this point as it would seem somewhat theoretical.
The black holes exist, but we're sure they aren't the dominant source of gravity in most of the galaxies we see. I'm not sure if that's what you're trying to say, so if I'm misinterpreting you, my apologies.
 

Related Threads for: Starless Galaxies?

  • Posted
Replies
22
Views
4K
  • Posted
Replies
5
Views
2K
  • Posted
Replies
11
Views
3K
  • Posted
Replies
6
Views
2K
P
  • Posted
Replies
9
Views
3K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top