Stat phys problem

  • Thread starter Pacopag
  • Start date
  • #1
197
4

Homework Statement


I need to find ntropy S(E) for N independent HO's for both the classical and quantum cases,
using the [tex]\mu[/tex]-canoncal esemble

Homework Equations


For one classical HO
[tex]H={p^2 \over{2m}}+{m\omega^2 q^2 \over 2}[/tex]
For one quantum HO
[tex]H=\hbar \omega (n+{1\over 2})[/tex]


The Attempt at a Solution


I tried to find the partitn function for one HO.
[tex]W_1={1\over h^3}\int d^3q d^3p \delta(H-E)[/tex]
[tex]W_1={1\over h^3} [/tex] times volume of 6-sphere with radius E
[tex]W_1={1\over h^3} {{\pi^3 E^6}\over 6}[/tex]
So for N HOs
[tex]W={W_1^N \over {N!}}={1\over h^{3N}} {{\pi^{3N} E^{6N}}\over 6^N}[/tex]
Then I can use
[tex]S(E)=k ln(W)[/tex]
Can anyone verify if I'm on the right track??
 

Answers and Replies

Related Threads on Stat phys problem

  • Last Post
Replies
0
Views
816
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
2
Views
4K
Replies
0
Views
2K
Replies
1
Views
2K
Replies
1
Views
901
Replies
1
Views
1K
Replies
0
Views
4K
Replies
0
Views
896
Top