1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

State-Space (SS) models

  1. Nov 17, 2015 #1
    1. The problem statement, all variables and given/known data
    The task is to write the following equations of motion as in equation (2) considering the inputs and outputs as in equation (3)
    \begin{equation}
    \begin{cases}
    (I_b+m_bl_b^2)\ddot{\theta}_b=m_bl_bg\theta_b-m_bl_b\ddot{x}_w-\frac{K_t}{R_m}v_m+\bigg(\frac{K_eK_t}{R_m}+b_f\bigg)\bigg(\frac{\dot{x}_w}{l_w}-\dot{\theta}_b\bigg)\\
    \bigg(\frac{J_w}{l_w}+l_wm_b+l_wm_w\bigg)\ddot{x}_w=-m_bl_bl_w\ddot{\theta}_b+\frac{K_t}{R_m}v_m-\bigg(\frac{K_eK_t}{R_M}+b_f\bigg)\bigg(\frac{\dot{x}_w}{l_w}-\dot{\theta}_b\bigg)
    \end{cases}
    \end{equation}
    2. Relevant equations
    Since this course is focused on control based State-Space (SS) models, we do now rewrite our EOM as
    \begin{equation}
    \begin{cases}
    \dot{x}=Ax+Bu
    Cx+Du
    \end{cases}
    \end{equation}
    for oppurtune x, A, B, C and D. As for the input and output, assume for now
    \begin{equation}
    u=v_m\\
    y=\theta_b
    \end{equation}
    3. The attempt at a solution
    Equation (3) in (2)
    \begin{equation}
    \begin{cases}
    \dot{x}=Ax+Bv_m\\
    \theta_b=Cx+Dv_m
    \end{cases}
    \end{equation}
     
  2. jcsd
  3. Nov 22, 2015 #2
    Thanks for the post! This is an automated courtesy bump. Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
     
  4. Nov 25, 2015 #3
    Define $\alpha$ and $\beta$ as
    \begin{equation}
    \begin{cases}
    \alpha=\frac{1}{\frac{J_w}{l_w}+l_wm_b+l_wm_w}\\
    \beta=\frac{1}{l_b+m_bl_b^2}
    \end{cases}
    \end{equation}
    Now substitute these two expressions into Equation (1) as in
    \begin{equation}
    \begin{cases}
    \ddot{x}_w=\alpha\bigg(-m_bl_bl_w\ddot{\theta}_b+\frac{K_t}{R_m}v_m-\bigg(\frac{K_eK_t}{R_M}+b_f\bigg)\bigg(\frac{\dot{x}_w}{l_w}-\dot{\theta}_b\bigg)\bigg)\\
    \ddot{\theta}_b=\beta\bigg(m_bl_bg\theta_b-m_bl_b\ddot{x}_w-\frac{K_t}{R_m}v_m+\bigg(\frac{K_eK_t}{R_m}+b_f\bigg)\bigg(\frac{\dot{x}_w}{l_w}-\dot{\theta}_b\bigg)\bigg)
    \end{cases}
    \end{equation}
    Expand the parentheses
    \begin{equation}
    \begin{cases}
    \ddot{x}_w=\alpha\bigg(-m_bl_bl_w\ddot{\theta}_b+\frac{K_t}{R_m}v_m-\bigg(\frac{K_eK_t}{R_Ml_w}\dot{x}_w-\frac{K_eK_t}{R_M}\dot{\theta}_b+\frac{b_f}{l_w}\dot{x}_w-b_f\dot{\theta}_b\bigg)\bigg)\\
    \ddot{\theta}_b=\beta\bigg(m_bl_bg\theta_b-m_bl_b\ddot{x}_w-\frac{K_t}{R_m}v_m+\frac{K_eK_t}{R_Ml_w}\dot{x}_w-\frac{K_eK_t}{R_M}\dot{\theta}_b+\frac{b_f}{l_w}\dot{x}_w-b_f\dot{\theta}_b\bigg)
    \end{cases}
    \end{equation}
    Collect coefficient in front of $x_w,\dot{x}_w,\ddot{x}_w,\theta_b,\dot{\theta}_b$ and $\ddot{\theta}_b$
    \begin{equation}
    \begin{cases}
    \ddot{x}_w=\alpha\bigg(-\bigg(\frac{K_eK_t}{R_Ml_w}+\frac{b_f}{l_w}\bigg)\dot{x}_w+\bigg(\frac{K_eK_t}{R_M}+b_f\bigg)\dot{\theta}_b-m_bl_bl_w\ddot{\theta}_b+\frac{K_t}{R_M}v_m\bigg)\\
    \ddot{\theta}_b=\beta\bigg(\bigg(\frac{K_eK_t}{R_Ml_w}+\frac{b_f}{l_w}\bigg)\dot{x}_w-m_bl_b\ddot{x}_w+m_bl_bg\theta_b-\bigg(\frac{K_eK_t}{R_M}+b_f\bigg)\dot{\theta}_b-\frac{K_t}{R_M}v_m\bigg)
    \end{cases}
    \end{equation}
    Add the variables with second order derivatives to the left hand side
    \begin{equation}
    \begin{cases}
    \ddot{x}_w+m_bl_bl_w\ddot{\theta}_b=\alpha\bigg(-\bigg(\frac{K_eK_t}{R_Ml_w}+\frac{b_f}{l_w}\bigg)\dot{x}_w+\bigg(\frac{K_eK_t}{R_M}+b_f\bigg)\dot{\theta}_b+\frac{K_t}{R_M}v_m\bigg)\\
    \ddot{\theta}_b+m_bl_b\ddot{x}_w=\beta\bigg(\bigg(\frac{K_eK_t}{R_Ml_w}+\frac{b_f}{l_w}\bigg)\dot{x}_w+m_bl_bg\theta_b-\bigg(\frac{K_eK_t}{R_M}+b_f\bigg)\dot{\theta}_b-\frac{K_t}{R_M}v_m\bigg)
    \end{cases}
    \end{equation}
    Express in State-Space form
    $$
    \begin{pmatrix}
    \dot{x}_w\\
    \ddot{x}_w+m_bl_bl_w\ddot{\theta}_b\\
    \dot{\theta}_b\\
    \ddot{\theta}_b+m_bl_b\ddot{x}_w
    \end{pmatrix}
    =
    \begin{pmatrix}
    0&1&0&0\\
    0&-\alpha\bigg(\frac{K_eK_t}{R_Ml_w}+\frac{b_f}{l_w}\bigg)&0&\alpha\bigg(\frac{K_eK_t}{R_M}+b_f\bigg)\\
    0&0&0&1\\
    0&\beta\bigg(\frac{K_eK_t}{R_Ml_w}\bigg)&\beta m_bl_bg&-\beta\bigg(\frac{K_eK_t}{R_M}+b_f\bigg)
    \end{pmatrix}
    \begin{pmatrix}
    x_w\\
    \dot{x}_w\\
    \theta_b\\
    \dot{\theta}_b
    \end{pmatrix}
    +
    \begin{pmatrix}
    0\\
    \alpha\frac{K_t}{R_M}\\
    0\\
    -\beta\frac{K_t}{R_M}
    \end{pmatrix}
    v_m
    $$
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted