1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Statistical and spectral function in thermal state

  1. Dec 4, 2013 #1
    1. The problem statement, all variables and given/known data
    The statistical and spectral functions for bosonic operators [itex]\phi_a[/itex] are:
    [itex] G_{ab}(t,\vec{x})=\frac{1}{2}\langle \{\phi_a(t,\vec{x}),\phi_b(0,\vec{0})\}\rangle [/itex],
    [itex] \rho_{ab}(t,\vec{x})=\langle [\phi_a(t,\vec{x}),\phi_b(0,\vec{0})]\rangle [/itex].
    The expectation values are in static thermal equilibrium in the grand canonical ensemble with Hamiltonian [itex]H'=H-\mu Q[/itex].

    Show that
    [itex] G_{ab}(\omega,\vec{k})=\frac{1}{2}\frac{1+e^{-\beta \omega}}{1-e^{-\beta\omega}}\rho_{ab}(\omega,\vec{k})[/itex]
    using the definitions of [itex]G_{ab}(\omega,\vec{k})[/itex] and [itex]\rho_{ab}(\omega,\vec{k})[/itex] in the basis of H' and inserting a complete set of states.


    2. Relevant equations


    3. The attempt at a solution
    [itex]G_{ab}(\omega,\vec{k})[/itex] and [itex]\rho_{ab}(\omega,\vec{k})[/itex] re defined as Fourier transforms of the above expressions. The expectation values are given as
    [itex] \langle A \rangle = \frac{tr\, e^{\beta H'}A}{tr\, e^{\beta H'}}[/itex]
    so
    [itex] \rho_{ab}(\omega,\vec{k})=\int d^dx dt\, \langle [\phi_a(t,\vec{x}),\phi_b(0,\vec{0})] \rangle e^{-i\vec{k}\vec{x}+i\omega t}[/itex]
    [itex] = \frac{1}{tr\, e^{\beta H'}}\int d^dx dt \sum_\alpha \langle\alpha|e^{\beta H'}[\phi_a(t,\vec{x}),\phi_b(0,\vec{0})]|\alpha\rangle e^{-i\vec{k}\vec{x}+i\omega t}[/itex]
    [itex] = \frac{1}{tr\, e^{\beta H'}}\int d^dx dt \sum_{\alpha,\gamma} \langle\alpha|e^{\beta \omega_\gamma}|\gamma\rangle\langle\gamma|[\phi_a(t,\vec{x}),\phi_b(0,\vec{0})]|\alpha\rangle e^{-i\vec{k}\vec{x}+i\omega t}[/itex]
    [itex] = \frac{1}{tr\, e^{\beta H'}}\int d^dx dt \sum_\alpha e^{\beta \omega_\alpha}\langle\alpha|[\phi_a(t,\vec{x}),\phi_b(0,\vec{0})]|\alpha\rangle e^{-i\vec{k}\vec{x}+i\omega t}[/itex]

    However, I don't know how the operators [itex]\phi_a(t,\vec{x})[/itex] act on the eigenstates of H' which I called [itex]|\alpha\rangle[/itex] here. So I don't really know how to proceed.
     
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?