1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Statistical mechanics

  1. Jun 16, 2005 #1
    I wish to know about web sites or other resourses from where i can get solutions for all the end of the chapter problems for the book on statistical Mechanics by R K Pathria
  2. jcsd
  3. Aug 24, 2008 #2
    there is' t...

  4. Aug 24, 2008 #3
    Why not post the problems here? Most statistical mechanics textbook problems are trivial...
  5. Aug 24, 2008 #4
    i 'm coursing statistical mechanics and i need to do all of the excersices of pathria ...

    i have do some of then , chapter 1,2 now.. .. but i can't understand the 1.1 and the 2.1


    well ...i found some kind of solution but i don't know it's really good ... www.mtholyoke.edu/~mktrias/physics/pathria_1.1.pdf

    i hope any help ... thanks
    Last edited: Aug 24, 2008
  6. Aug 24, 2008 #5
    In the last line of the PDF file, you got the expression proportional to:

    W(x) = [x(E-x)]^M

    with M = 3N/2 and x = E1

    You should then proceed, not by saying: "this is a binomial distribution etc. etc." but by expanding around the maximum. The maximum is at x = E/2. Let's put x = E/2 + y, and call

    W(x) = W(E/2 + y) = P(y)

    and expand:

    Log[P(y)] = M [Log(E/2 + y) + Log(E/2 - y)] =

    M[2 Log(E/2) + Log(1 + 2y/E) + Log(1 - 2y/E)] =

    Let's expand in powers of 2y/E

    M [2 Log(E/2) - 4 y^2/E^2 + ...]

    So, for small y we have:

    P(y) = const. Exp(-4 y^2/E^2)

    If you are careful and keep the constant terms, the Gaussian should automatically be correctly normalized.
  7. Aug 24, 2008 #6
    ok .. thanks a lot.

    and if you know any of the exercise 2.1 let me know...

    thans .
  8. Oct 11, 2008 #7
    Hi dukemaster !!!

    I don't write english well, my language is spanish... but that's not important here, the important is the physic. The page that you checked isn't bad, but Margaret Trias solved the problem for the ideal gas case. I think that the book want the solution in the general case. I'll tell you the solution of the fisrt part, you can do the last part knowing the first.

    Supose that the microestates number is function of E1 and E2 like: O(E1,E2) , where O is Omega (in spanish). The logarithm Ln(O(E1,E2)) decreases more quickly than the fuction O(E1,E2), then, we'll take an expantion in Taylor series about [E1] (averge value), this is:

    Ln(O(E1,E2)) =Ln(O([E1],E2))+(E1-[E1])(d_1)Ln(O([E1],E2))+))+(E1-[E1])^2(d_2)Ln(O([E1],E2))+...

    where (d_1) is the first derivate with respect E1 and (d_2) the second derivate with respect the same.

    Check that the first term in the expantion is constant, the secod is zero (that's the equilibrium condition) and the third is differente to zero, then:

    Ln(O(E1,E2)) =C+(E1-[E1])^2 (d_2)Ln(O([E1],E))

    taking the exponetial in both sides:

    O(E1,E2)) =Aexp{(E1-[E1])^2 (d_2)Ln(O([E1],E))}

    that's is the Gaussian in the parameter E1. If you take the case of ideal classical gas O(E)=cte E^(3N/2), you'll find the solution of b).

    Greetings to all!!!

    I hope it will serve my comment.
  9. Oct 11, 2008 #8
    thanks ALBERTO666 !!

    o como decimos en chile " Muchas Gracias" jejeje .. i'm Chilean and my english is't too good jeje ...

    i saw your answer and i repeat ... thanks.

    to do this excercises i need to expand my mind .. and thing more than usual..jeje. well ... Bye
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: Statistical mechanics
  1. Statistical mechanics (Replies: 2)

  2. Statistical Mechanics (Replies: 1)

  3. Statistical Mechanics (Replies: 1)

  4. Statistical Mechanics (Replies: 0)

  5. Statistical mechanics (Replies: 0)