- #1
Eulersheep
- 1
- 0
So the pressure for a canonical ensemble is:
P = kbT dZ/dV
P = pressure
P = -∑pi dEi/dV
Z = ∑e-βEi
pi is the probability of being in microstate i
Ei is the energy of state i
β = 1/kbT
<E> = U = average energy
U = -1/Z dZ/dβ = -d(Ln(Z))/dβ
How can the pressure (given above) be derived in terms of the partition function?
P = kbT dZ/dV
P = pressure
P = -∑pi dEi/dV
Z = ∑e-βEi
pi is the probability of being in microstate i
Ei is the energy of state i
β = 1/kbT
<E> = U = average energy
U = -1/Z dZ/dβ = -d(Ln(Z))/dβ
How can the pressure (given above) be derived in terms of the partition function?