Hello: I usually think of Stoke's Theorem as:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\oint F\bullet dr = \int \int curl F \bullet dS[/tex]

where dr is over a curve C and dS is over a surface sigma. But today in class the instructor said that Stoke's Theorem can also be used to change the surface over which one is intergrating, so that if sigma has a well defined boundary, say, C, then the surface integral of function F over sigma = surface integral F over any surface with C as the boundary. A more concrete example, so then say you are integrating some F over a paraboloid z = sqrt(1-x^2-y^2) above the xy plane. So then would it be true that my surface integral over the paraboloid would be the same as if I integrated over the disk formed by x^2+y^2 = 1? Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Stoke's Theorem

**Physics Forums | Science Articles, Homework Help, Discussion**