Stokes' theorem

  • Thread starter imana41
  • Start date
  • #1
36
0
this Q want to check Stokes' theorem ? for [URL]http://latex.codecogs.com/gif.latex?F=(x^2,xy,-z^2)[/URL] and surface [URL]http://latex.codecogs.com/gif.latex?x^2+y^2+z^2=1[/URL] and [URL]http://latex.codecogs.com/gif.latex?z\geqslant%200[/URL]
i should equal [PLAIN]http://latex.codecogs.com/gif.latex?\oint%20Mdx+ndy+pdz [Broken] [Broken]
with [PLAIN]http://latex.codecogs.com/gif.latex?\int%20\int%20curlF.n.d\sigma [Broken] [Broken]

i know : curlF=(0,0,y) and n=(x,y,z) and [URL]http://latex.codecogs.com/gif.latex?d\sigma%20=\frac{dxdy}{z}[/URL] and [PLAIN]http://latex.codecogs.com/gif.latex?\int%20\int%20curlF.n.d\sigma [Broken] [Broken] = [URL]http://latex.codecogs.com/gif.latex?\int_{-1}^{1}\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}ydydx=\frac{4}{3}[/URL]

but for [PLAIN]http://latex.codecogs.com/gif.latex?\oint%20Mdx+ndy+pdz [Broken] [Broken] if i get x=cost ,y=sint and z=0 the answer is [URL]http://latex.codecogs.com/gif.latex?\int_{0}^{\pi/2}x^2dx+xydy-z^2dz=0[/URL] but i can't find my problem??
 
Last edited by a moderator:

Answers and Replies

  • #2
HallsofIvy
Science Advisor
Homework Helper
41,847
967
Why have you not changed [itex]x^2dx+ xydy- z^2dz[/itex] into terms of t?

if x= cos(t) then dx= -sin(t)dt, if y= sin(t) then dy= cos(t)dt, and if z= 0, then dz= 0.
Now, what us [itex]x^2dx+ xydy- z^2dz[/itex] in terms of t?
 
  • #3
169
0
[tex]\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} y dy = 0[/tex]
 
  • #4
36
0
[tex]\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} y dy = 0[/tex]

i can't say [URL]http://latex.codecogs.com/gif.latex?\int_{-1}^{1}\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}ydydx[/URL]

= [URL]http://latex.codecogs.com/gif.latex?4\int_{0}^{1}\int_{0}^{\sqrt{1-x^2}}ydydx=\frac{4}{3}[/URL]
 
Last edited by a moderator:
  • #5
36
0
Why have you not changed [itex]x^2dx+ xydy- z^2dz[/itex] into terms of t?

if x= cos(t) then dx= -sin(t)dt, if y= sin(t) then dy= cos(t)dt, and if z= 0, then dz= 0.
Now, what us [itex]x^2dx+ xydy- z^2dz[/itex] in terms of t?

gif.latex?\int%20(cost)^2(-sint)dt+(sint)(cost)(cost)dt=0.gif
 
  • #6
169
0
i can't say
gif.latex?\int_{-1}^{1}\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}ydydx.gif


=
gif.latex?4\int_{0}^{1}\int_{0}^{\sqrt{1-x^2}}ydydx=\frac{4}{3}.gif

No, you only have
[tex]\int_{-a}^a f(x) \mathrm{d} x = 2 \int_0^a f(x) \mathrm{d} x[/tex] when f(-x) = f(x), since then (set t = -x in the first integral that follows)
[tex]\int_{-a}^a f(x) \mathrm{d} x = \int_{-a}^0 f(x) \mathrm{d} x + \int_0^a f(x) \mathrm{d} x = - \int_a^0 f(-t) \mathrm{d} t + \int_0^a f(x) \mathrm{d} x = \int_0^a [ f(x) + f(-x)] \mathrm{d} x = 2 \int_0^a f(x) \mathrm{d} x[/tex].
If you have f(x) = -f(-x), then f(x)+f(-x) = 0, so your integral yields zero. This happens for your inner integral, where f(y) = y.
 
  • #7
36
0
thanks for your help
 

Related Threads on Stokes' theorem

  • Last Post
Replies
9
Views
2K
  • Last Post
Replies
3
Views
1K
  • Last Post
Replies
2
Views
647
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
5
Views
2K
  • Last Post
Replies
16
Views
2K
  • Last Post
Replies
11
Views
2K
  • Last Post
Replies
4
Views
3K
J
  • Last Post
Replies
11
Views
3K
  • Last Post
Replies
4
Views
2K
Top