- #1
- 14
- 0
A stone is thrown vertically downward from a 2.00x10^2m high cliff at an initial velocity of 5.00m/s. (a) How long does it take for the stone to reach the base of the cliff? (b) What is the stones final velocity?
a) d = vi(t)+1/2a(t)^2
200=5(t)+1/2(9.81)t^2
0= -200 + (5)t + (4.910^2
4.91(t)^2 + (5)t -200
t= -5+- sqaureroot sign (5)^2-4(4.91)(-200)
-5+- squareroot sign 25+3953 / 9.81
t=6.0s
so i used the quadratic fromula
b) vf^2=vi^2+2ad
vf^2=5^2+2(9.81)(200)
vf^2=25+19.62(200)
vf^2 = 3949
vf= 63m/s
a) d = vi(t)+1/2a(t)^2
200=5(t)+1/2(9.81)t^2
0= -200 + (5)t + (4.910^2
4.91(t)^2 + (5)t -200
t= -5+- sqaureroot sign (5)^2-4(4.91)(-200)
-5+- squareroot sign 25+3953 / 9.81
t=6.0s
so i used the quadratic fromula
b) vf^2=vi^2+2ad
vf^2=5^2+2(9.81)(200)
vf^2=25+19.62(200)
vf^2 = 3949
vf= 63m/s