(adsbygoogle = window.adsbygoogle || []).push({}); One type of steel has a density of 7000 kg/m^3 and a breaking stress of 7.30×10^8 Pa. A cylindrical guitar string is to be made out of a quantity of steel with a mass of 3.50 g.

What is the length of the longest and thinnest string that can be placed under a tension of 930 N without breaking?

What is the highest fundamental frequency that this string could have?

I know that youngs modulus is tensile stress over strain. Tensile strain is delta l / l , and for the second part, i noe that F = V/(2L), but not sure what to do

im not really sure how to go about this. I know the stress is 7.3 x 10^8, so i treated that as stress, and divided by Youngs modulus for steel (20x10^10) to get strain (.0039), which i noe is equal to delta l / l. But i am not sure how to proceed

1. The problem statement, all variables and given/known data

2. Relevant equations

3. The attempt at a solution

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Strain and frequency

**Physics Forums | Science Articles, Homework Help, Discussion**