1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Strange area formula found while equating capacitance formulas for parallel plates

  1. Sep 21, 2008 #1
    This isn't a problem out of my book, just something I noticed while *doing* a problem on parallel capacitor plates. The problem gave me an area for each plate (1 m^2)and a desired capacitance (1 F)and prompted me to find the distance between the plates.

    C = q/v (capacitance = charge/potential difference)
    v = integration [E*ds] (potential diff = int [electric field * infinitesimal distance])

    Here's what I was supposed to be doing:

    V = integration [E * ds] from 0 to d, that is Ed. From flux, q/(ε0) = EA, so q = (ε0)EA. C = q/v, therefore C = (ε0)A/d. Plug in A and C and get d.

    But I was also thinking:
    C = q/v. Plugging in v = kq/d, you get C=d/k or C=4π(ε0)d. Setting the two Cs equal, you get A=4πd^2, which is the surface area of a sphere! What?

    I have an idea that it's related to A) an infinitesimally small piece of a sphere being a square B) ignoring fringing, and thus making the situation as though the two plates were shells. Is this right? Plugging in the d that I got (8.854 x 10^-12 m) back into A = 4πr^2 gets me a near-negligible area, which seems to make sense with the dA idea... but I'm not sure how this all plays out mathematically.

    Thanks,
    Stephanie
     
    Last edited: Sep 21, 2008
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you help with the solution or looking for help too?
Draft saved Draft deleted



Similar Discussions: Strange area formula found while equating capacitance formulas for parallel plates
  1. The general formula (Replies: 0)

Loading...