let be the identity(adsbygoogle = window.adsbygoogle || []).push({});

[tex] (2 \pi ) i^{m-1}D^{m} \delta (u) = \int_{-\infty}^{\infty} dx e^{iux}x^{m-1} [/tex]`

then making the replacement u=e^D D derivative with respect to 'x' then

[tex] (2 \pi ) i^{m-1}D^{m} \delta (e^{D})f(0) = \int_{-\infty}^{\infty} dx e^{ixe^{D}}x^{m-1}f(0)=\int_{-\infty}^{\infty} dx x^{m-1}\sum_{k=0}^{\infty}\frac{i^{k}f(n)}{n!} [/tex]

the problem is that i do not know how to define [tex] D^{m} \delta (e^{D}) [/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Strange formula

**Physics Forums | Science Articles, Homework Help, Discussion**