- #1
- 51
- 0
In Batchelor's text (2000) on page 76, the stream function is defined as
[tex]
\psi - \psi_0 = \int\left(u dy - v dx\right)
[/tex]
where [itex] \psi_0 [/itex] is a constant
Now I begin with a simple function for [itex]u[/itex] where
[tex]
u = x^3
[/tex]
From mass conservation,
[tex]
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
[/tex]
[tex]
3x^2 + \frac{\partial v}{\partial y} = 0
[/tex]
[tex]
v = -3x^2y
[/tex]
Plugging this into the equation for the stream function
[tex]
\psi - \psi_0 = \int\left(u dy - v dx\right)
[/tex]
[tex]
\psi - \psi_0 = \int\left(x^3 dy + 3x^2y dx\right)
[/tex]
[tex]
\psi - \psi_0 = \int\left(x^3 dy\right) + \int\left(3x^2y dx\right)
[/tex]
[tex]
\psi - \psi_0 = x^3y + x^3y + C
[/tex]
[tex]
\psi - \psi_0 = 2x^3y + C
[/tex]
Now using the equations for [itex] u [/itex] and [itex] v [/itex],
[tex]
u = \frac{\partial \psi}{\partial y}
[/tex]
[tex]
u = \frac{\partial (2x^3y + C - \psi_0)}{\partial y}
[/tex]
[tex]
u = 2x^3
[/tex]
[tex]
v = -\frac{\partial \psi}{\partial x}
[/tex]
[tex]
v = -\frac{\partial (2x^3y + C - \psi_0)}{\partial x}
[/tex]
[tex]
v = -6x^2y
[/tex]
I seems like the initial [itex]v=-3x^2y[/itex] and [itex]u=x^3[/itex] are off from the recalculated [itex]v = -6x^2y[/itex] and [itex]u = 2x^3[/itex] by a factor of two. Am I doing something wrong? Thanks.
[tex]
\psi - \psi_0 = \int\left(u dy - v dx\right)
[/tex]
where [itex] \psi_0 [/itex] is a constant
Now I begin with a simple function for [itex]u[/itex] where
[tex]
u = x^3
[/tex]
From mass conservation,
[tex]
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
[/tex]
[tex]
3x^2 + \frac{\partial v}{\partial y} = 0
[/tex]
[tex]
v = -3x^2y
[/tex]
Plugging this into the equation for the stream function
[tex]
\psi - \psi_0 = \int\left(u dy - v dx\right)
[/tex]
[tex]
\psi - \psi_0 = \int\left(x^3 dy + 3x^2y dx\right)
[/tex]
[tex]
\psi - \psi_0 = \int\left(x^3 dy\right) + \int\left(3x^2y dx\right)
[/tex]
[tex]
\psi - \psi_0 = x^3y + x^3y + C
[/tex]
[tex]
\psi - \psi_0 = 2x^3y + C
[/tex]
Now using the equations for [itex] u [/itex] and [itex] v [/itex],
[tex]
u = \frac{\partial \psi}{\partial y}
[/tex]
[tex]
u = \frac{\partial (2x^3y + C - \psi_0)}{\partial y}
[/tex]
[tex]
u = 2x^3
[/tex]
[tex]
v = -\frac{\partial \psi}{\partial x}
[/tex]
[tex]
v = -\frac{\partial (2x^3y + C - \psi_0)}{\partial x}
[/tex]
[tex]
v = -6x^2y
[/tex]
I seems like the initial [itex]v=-3x^2y[/itex] and [itex]u=x^3[/itex] are off from the recalculated [itex]v = -6x^2y[/itex] and [itex]u = 2x^3[/itex] by a factor of two. Am I doing something wrong? Thanks.