In Batchelor's text (2000) on page 76, the stream function is defined as(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

\psi - \psi_0 = \int\left(u dy - v dx\right)

[/tex]

where [itex] \psi_0 [/itex] is a constant

Now I begin with a simple function for [itex]u[/itex] where

[tex]

u = x^3

[/tex]

From mass conservation,

[tex]

\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0

[/tex]

[tex]

3x^2 + \frac{\partial v}{\partial y} = 0

[/tex]

[tex]

v = -3x^2y

[/tex]

Plugging this into the equation for the stream function

[tex]

\psi - \psi_0 = \int\left(u dy - v dx\right)

[/tex]

[tex]

\psi - \psi_0 = \int\left(x^3 dy + 3x^2y dx\right)

[/tex]

[tex]

\psi - \psi_0 = \int\left(x^3 dy\right) + \int\left(3x^2y dx\right)

[/tex]

[tex]

\psi - \psi_0 = x^3y + x^3y + C

[/tex]

[tex]

\psi - \psi_0 = 2x^3y + C

[/tex]

Now using the equations for [itex] u [/itex] and [itex] v [/itex],

[tex]

u = \frac{\partial \psi}{\partial y}

[/tex]

[tex]

u = \frac{\partial (2x^3y + C - \psi_0)}{\partial y}

[/tex]

[tex]

u = 2x^3

[/tex]

[tex]

v = -\frac{\partial \psi}{\partial x}

[/tex]

[tex]

v = -\frac{\partial (2x^3y + C - \psi_0)}{\partial x}

[/tex]

[tex]

v = -6x^2y

[/tex]

I seems like the initial [itex]v=-3x^2y[/itex] and [itex]u=x^3[/itex] are off from the recalculated [itex]v = -6x^2y[/itex] and [itex]u = 2x^3[/itex] by a factor of two. Am I doing something wrong? Thanks.

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Stream Function Confusion

Loading...

Similar Threads - Stream Function Confusion | Date |
---|---|

How to design canal to reduce stream temperature? | May 17, 2017 |

Defining Stream Function Psi. | Mar 25, 2011 |

One question about stream function in fluid mechanics | Sep 22, 2006 |

3 dimensional stream function | Aug 11, 2005 |

**Physics Forums - The Fusion of Science and Community**