In Batchelor's text (2000) on page 76, the stream function is defined as(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

\psi - \psi_0 = \int\left(u dy - v dx\right)

[/tex]

where [itex] \psi_0 [/itex] is a constant

Now I begin with a simple function for [itex]u[/itex] where

[tex]

u = x^3

[/tex]

From mass conservation,

[tex]

\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0

[/tex]

[tex]

3x^2 + \frac{\partial v}{\partial y} = 0

[/tex]

[tex]

v = -3x^2y

[/tex]

Plugging this into the equation for the stream function

[tex]

\psi - \psi_0 = \int\left(u dy - v dx\right)

[/tex]

[tex]

\psi - \psi_0 = \int\left(x^3 dy + 3x^2y dx\right)

[/tex]

[tex]

\psi - \psi_0 = \int\left(x^3 dy\right) + \int\left(3x^2y dx\right)

[/tex]

[tex]

\psi - \psi_0 = x^3y + x^3y + C

[/tex]

[tex]

\psi - \psi_0 = 2x^3y + C

[/tex]

Now using the equations for [itex] u [/itex] and [itex] v [/itex],

[tex]

u = \frac{\partial \psi}{\partial y}

[/tex]

[tex]

u = \frac{\partial (2x^3y + C - \psi_0)}{\partial y}

[/tex]

[tex]

u = 2x^3

[/tex]

[tex]

v = -\frac{\partial \psi}{\partial x}

[/tex]

[tex]

v = -\frac{\partial (2x^3y + C - \psi_0)}{\partial x}

[/tex]

[tex]

v = -6x^2y

[/tex]

I seems like the initial [itex]v=-3x^2y[/itex] and [itex]u=x^3[/itex] are off from the recalculated [itex]v = -6x^2y[/itex] and [itex]u = 2x^3[/itex] by a factor of two. Am I doing something wrong? Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Stream Function Confusion

**Physics Forums | Science Articles, Homework Help, Discussion**