- 150

- 0

[tex] \int dx^4 \sqrt{-h}[/tex]

In the Randall Sundrum the action for the hidden brane is:

[tex] V_0\int dx^4 \sqrt{-h}[/tex], where [tex]V_0[/tex] is the tension on the brane hidden.

follow the stress energy tensor

[tex] T_{MN}= V_0 h_{uv} \delta^u_M \delta^v_N \delta(\phi)[/tex], where [tex]\phi[/tex] is the extra dimention.

In other paper, where [tex]T_{MN}[/tex] is not diagonal, for example in the friedman equation in http://arxiv.org/abs/hep-th/0303095v1 (page 6)...

[tex] T_{00}= -\rho \delta(\phi)[/tex]

[tex] T_{ii}= p \delta(\phi)[/tex]

the other component are zero.

I understand thar [tex]\rho , p[/tex] are energy density and presion

If , i use other embedding my energy stress tensor is

[tex] T_{00}= - \delta(\phi)[/tex]

[tex] T_{ii}= \delta(\phi)[/tex]

[tex] T_{0 \phi}= \delta(\phi)[/tex]

[tex] T_{\phi \phi}= \delta(\phi)[/tex]

¿can i to multiply the each component of the stress tensor by differents constants???...for example:

[tex] T_{00}= - k_1 \delta(\phi)[/tex]

[tex] T_{ii}= k_2 \delta(\phi)[/tex]

[tex] T_{0 \phi}= k_3 \delta(\phi)[/tex]

[tex] T_{\phi \phi}= k_4 \delta(\phi)[/tex]