Hi,(adsbygoogle = window.adsbygoogle || []).push({});

How would go about arguing that the Stress-Energy tensor is actually a tensor based on how it must be linear in both it's arguments?

I'm thinking it requires one 1-form to select the component of 4-momentum (e.g. [tex] \vec{E}=<\tilda{dt} ,\vec{P}> ) [/tex] and also one 1-form to define the surface (e.g [tex] \tilda{dt} [/tex] defining surfaces of constant t, so giving us densities etc).

I know that [tex] T^{\alpha \beta}=T(\tilda{dx^{\alpha}}, \tilda{dx^{\beta}}) [/tex]. Not sure how one would argue that it therefore must be linear in these arguments?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Stress-energy tensor

Loading...

Similar Threads - Stress energy tensor | Date |
---|---|

I Stress–energy pseudotensor of gravitation field for DE | Jan 30, 2018 |

I Stress-energy tensor contribution to curvature | Jan 13, 2018 |

I How to fill the stress energy tensor for multi body systems | Dec 21, 2017 |

I How do we get invariant curvature from momentum and energy? | Dec 9, 2017 |

A Complex components of stress-energy tensor | Nov 5, 2017 |

**Physics Forums - The Fusion of Science and Community**