- #1
binbagsss
- 1,326
- 12
1. Homework Statement
Question (with the following definitions here):
- Consider ##L_0|x>=0## to show that ##m^2=\frac{1}{\alpha'}##
- Consider ##L_1|x>=0 ## to conclude that ## 1+A-2B=0##
- where ##d## is the dimension of the space ##d=\eta^{uv}\eta_{uv}##
For the L1 operator I am able to get the correct expression of ##1+A-2B=0##
I am struggling with L0
Any help much appreciated.2. Homework Equations
##\alpha^u_0={p^u}\sqrt{2 \alpha'}##
##\alpha_{n>0}## annihilate
##\alpha_{n<0}## create
## [\alpha_n^u, \alpha_m^v]=n\delta_{n+m}\eta^{uv}## (*)
where ##\eta^{uv}## is the Minkowski metric
##p^u|k>=k^u|k>##3. The Attempt at a Solution Here is my L0 attempt- Consider ##L_0 |x>=0## to show that ##m^{2}=1/\alpha'##
##L_0=(\alpha_0^2+2\sum\limits_{n=1}\alpha_{-n}\alpha_{n}-1)##
So first of all looking at the first term of ##|x>## I need to consider:
##L_0 \alpha_{-1}\alpha_{-1}|k> =(\alpha_0^2+2\alpha_{-1}\alpha_{1}-1)\alpha_{-1}\alpha_{-1}##
Considering the four product operator and using the commutators in the same way as done for ##L_1## I get from this:
##L_0\alpha_{-1}\alpha_{-1}|k> =(\alpha_0^2+4-1)\alpha_{-1}\alpha_{-1}|k>## (**)
Here's how I got it:(dropped indices in places, but just to give idea, ##\eta^{uv}## the minkowksi metric)
##2\alpha_{-1}\alpha_{1}\alpha_{-1}\alpha_{-1} |k>
= 2(\alpha_{-1}(\alpha_{-1}\alpha_1+\eta)\alpha_{-1})|k>
= 2(\alpha_{-1}\alpha_{-1}\alpha_1\alpha_{-1}+\eta\alpha_{-1}\alpha_{-1})|k>
= 2(\alpha_{-1}\alpha_{-1}(\alpha_{-1}\alpha_{1}+\eta)+\eta\alpha_{-1}\alpha_{-1})|k>
=2(\alpha_{-1}\alpha_{-1}(0+\eta|k>)+\eta\alpha_{-1}\alpha_{-1}|k>)
= 2(2\alpha_{-1}.\alpha_{-1})##
so from (**) I have:
##L_0\alpha_{-1}\alpha_{-1}|k> =(\alpha_0^2+3)\alpha_{-1}\alpha_{-1}|k>=0##
##=(2\alpha'p^2+3)\alpha_{-1}\alpha_{-1}|k>=0##
##\implies 2\alpha'p^2+3=0##
## \implies 2(-m^2)\alpha'=-3##
So I get ## m^{2}=3/\alpha'## and not ##1/\alpha'## :(
Any help much appreciated ( I see the mass is independent of ##A## and ##B## so I thought I'd deal with the first term before confusing my self to see why these terms vanish)
Question (with the following definitions here):
- Consider ##L_0|x>=0## to show that ##m^2=\frac{1}{\alpha'}##
- Consider ##L_1|x>=0 ## to conclude that ## 1+A-2B=0##
- where ##d## is the dimension of the space ##d=\eta^{uv}\eta_{uv}##
For the L1 operator I am able to get the correct expression of ##1+A-2B=0##
I am struggling with L0
Any help much appreciated.2. Homework Equations
##\alpha^u_0={p^u}\sqrt{2 \alpha'}##
##\alpha_{n>0}## annihilate
##\alpha_{n<0}## create
## [\alpha_n^u, \alpha_m^v]=n\delta_{n+m}\eta^{uv}## (*)
where ##\eta^{uv}## is the Minkowski metric
##p^u|k>=k^u|k>##3. The Attempt at a Solution Here is my L0 attempt- Consider ##L_0 |x>=0## to show that ##m^{2}=1/\alpha'##
##L_0=(\alpha_0^2+2\sum\limits_{n=1}\alpha_{-n}\alpha_{n}-1)##
So first of all looking at the first term of ##|x>## I need to consider:
##L_0 \alpha_{-1}\alpha_{-1}|k> =(\alpha_0^2+2\alpha_{-1}\alpha_{1}-1)\alpha_{-1}\alpha_{-1}##
Considering the four product operator and using the commutators in the same way as done for ##L_1## I get from this:
##L_0\alpha_{-1}\alpha_{-1}|k> =(\alpha_0^2+4-1)\alpha_{-1}\alpha_{-1}|k>## (**)
Here's how I got it:(dropped indices in places, but just to give idea, ##\eta^{uv}## the minkowksi metric)
##2\alpha_{-1}\alpha_{1}\alpha_{-1}\alpha_{-1} |k>
= 2(\alpha_{-1}(\alpha_{-1}\alpha_1+\eta)\alpha_{-1})|k>
= 2(\alpha_{-1}\alpha_{-1}\alpha_1\alpha_{-1}+\eta\alpha_{-1}\alpha_{-1})|k>
= 2(\alpha_{-1}\alpha_{-1}(\alpha_{-1}\alpha_{1}+\eta)+\eta\alpha_{-1}\alpha_{-1})|k>
=2(\alpha_{-1}\alpha_{-1}(0+\eta|k>)+\eta\alpha_{-1}\alpha_{-1}|k>)
= 2(2\alpha_{-1}.\alpha_{-1})##
so from (**) I have:
##L_0\alpha_{-1}\alpha_{-1}|k> =(\alpha_0^2+3)\alpha_{-1}\alpha_{-1}|k>=0##
##=(2\alpha'p^2+3)\alpha_{-1}\alpha_{-1}|k>=0##
##\implies 2\alpha'p^2+3=0##
## \implies 2(-m^2)\alpha'=-3##
So I get ## m^{2}=3/\alpha'## and not ##1/\alpha'## :(
Any help much appreciated ( I see the mass is independent of ##A## and ##B## so I thought I'd deal with the first term before confusing my self to see why these terms vanish)