1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Structure constants of Lie algebra

  1. Jul 25, 2006 #1
    The following matrices are written in Matlab codes form.

    The standard basis for so(3) is: L1 = [0 0 0; 0 0 -1; 0 1 0], L2 = [0 0 1; 0 0 0; -1 0 0], L3 = [0 -1 0; 1 0 0; 0 0 0]. Since [L1, L2] = L3, the structure constants of this Lie algebra are C(12, 1) = C(12, 2) = 0, C(12, 3) = 1. According to do Carmo and other text books, if M1, M2 and M3 is the basis for the left-invariant vector fields of A, where A is a member of SO(3), we have [Mi, Mj] = C(ij, k)Mk, where Mi = A * Li. In the above case, we have [M1, M2] = M3.

    But, when I put A = [cos(t) -sin(t) 0; sin(t) cos(t) 0; 0 0 1], then M1 = [0 0 sin(t); 0 0 -cos(t); 0 -1 0], M2 = [0 0 cos(t); 0 0 sin(t); -1 0 0], and M3 = [-sin(t) -cos(t) 0; cos(t) -sin(t) 0; 0 0 0]. By straightforward calculation, it can be seen that [M1, M2] is not equal to M3.
    I believe the text books could not be wrong , but my calculation is also correct. I am in confusion. Please help me.
     
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you help with the solution or looking for help too?



Similar Discussions: Structure constants of Lie algebra
Loading...