Hi,(adsbygoogle = window.adsbygoogle || []).push({});

Let's say I have a 10 dimensional Lie algebra over some field of functions, something along the lines of at least twice differentiable with twice differentiable inverses. The structure constants have inputs from this field. Is it possible to build a metric from these structure constants?

I have seen that a symmetric bi-linear form (the Killing-Cartan Form) that can also be non-degenerate for semi-simple algebras can be formed through contraction of the structure constants [itex]\kappa f^{\alpha\beta}_{\quad\gamma} f^{\delta\gamma}_{\quad\beta}=K^{\alpha\delta}[/itex]. Are there any other contractions or tensors one can form from structure constants over a field of functions (something other than [itex]\mathbb{R}[/itex] or [itex]\mathbb{C}[/itex])?

Thanks,

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Structure constants to metric

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

Loading...

Similar Threads for Structure constants metric |
---|

A Algebraic structure in time evolution |

I Galois Theory - Structure Within Aut(K/Q) ... |

**Physics Forums | Science Articles, Homework Help, Discussion**