• Support PF! Buy your school textbooks, materials and every day products Here!

Stubborn ODE

Hi,

I'm having trouble with this ODE:

y' + 4xy - y^2 = 4x^2 - 7

=> y' = 4x^2 - 4xy + y^2 - 7
= (2x - y)^2 - 7

=> x(dv/dx) + v = (2x-vx)^2 - 7
= x^2(2-v)^2 - 7


I assume this ODE is of the homogeneous type, so I've substituted v=y/x and gotten thus far, but, what's the next step?
 

Answers and Replies

ehild
Homework Helper
15,361
1,778
FeynmanIsMyHero said:
Hi,

I'm having trouble with this ODE:

y' + 4xy - y^2 = 4x^2 - 7

=> y' = 4x^2 - 4xy + y^2 - 7
= (2x - y)^2 - 7




Try to replace 2x-y by v and solve for v. .

ehild
 
584
0
Hmm this looks exactly like one of the questions on my assignment. Don't know of you are from University of Melbourne but if you are then you are ignoring the explicit instruction that we're supposed to write up the solutions to the assignment independently.

In any case if you are from the same uni as I am then a hint that I can give you w/o actually telling you how to do the question is to go back to the problem sheets. There is a question which requires the same technique.

You are on the right track btw.
 
Last edited:
Thanks, I've figured it out now! :tongue2:
 

Related Threads for: Stubborn ODE

Replies
6
Views
8K
  • Last Post
Replies
6
Views
3K
  • Last Post
Replies
1
Views
1K
Replies
4
Views
7K
  • Last Post
Replies
2
Views
4K
  • Last Post
Replies
20
Views
2K
Top