I'am trying to prove(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\int e^{ix}cos(x) dx= \frac{1}{2}x-\frac{1}{4}ie^{2ix}[/tex]

Wolfram tells so http://integrals.wolfram.com/index.jsp?expr=e^(i*x)cos(x)&random=false

But I am stuck in obtaining the first term:

My step typically involved integration by parts:

let [itex]u=e^{ix}cos(x)[/itex] and [itex]dv=dx[/itex]

so:

[tex]du=-e^{ix}sin(x)dx+icos(x)e^{ix}[/tex][tex]du=ie^{ix}(sin(x)+cos(x))dx[/tex][tex]du=ie^{2ix}dx[/tex]

the other one is just: [itex]v=x[/itex]

then:

[tex]\int e^{ix}cos(x) dx=xe^{ix}cos(x)-i\int xe^{2ix}dx[/tex]

We will again do another integration by parts for the second term, so we let [itex]u=x[/itex] and [itex]dv=e^{2ix}dx[/itex] then solving further, we obtain:

[tex]\int xe^{2ix}dx=\frac{-i}{2}xe^{2ix}+\frac{1}{4}e^{2ix}[/tex]

plugging it back to the original problem, then doing simple distribution, we will obtain:

[tex]\int e^{ix}cos(x) dx=xe^{ix}cos(x)-i\left ( \frac{-i}{2}xe^{2ix}+\frac{1}{4}e^{2ix}\right )[/tex]

[tex]\int e^{ix}cos(x) dx=xe^{ix}cos(x)- \frac{1}{2}xe^{2ix}-\frac{1}{4}ie^{2ix}[/tex]

notice that we have proved the 2nd term, but the other half is badly away from what the Integration Table and Tools says:

[tex]\int e^{ix}cos(x) dx= \frac{1}{2}x-\frac{1}{4}ie^{2ix}[/tex]

What have I gone wrong?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Stuck in Integrating e^(i*x)cos(x)

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**