1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Stuck - infinite sum

  1. Dec 7, 2011 #1
    Hello Physicsforum,

    I am trying to compute the following double sum:

    [itex]\sum_{j\in\mathbb{N}_0/2}\sum_{m=-j}^j\frac{x^{j+m}}{(j+m)!(j-m)!}e^{-\kappa^2j(j+1)/s}[/itex]

    where x, kappa and s are parameters. It is possible with e.g. Mathemtatica to carry out the sum over m explicitly, which yields

    [itex]\sum_{j\in\mathbb{N}_0/2}(j!)^{-2}e^{-\kappa^2j(j+1)/s}[_2F_1(1,-j,j+1,-x^{-1})+_2F_1(1,-j,j+1,-x)-1][/itex]

    where [itex]_2F_1[/itex] is the ordinary hypergeometric function. This is however a fairly horrendous expression to sum over. It would be intereseting enough to understand the asymptotic behaviour of the final result for large and for small x as a function of s and kappa.

    Does anybody have ideas/tricks in mind how to deal with this sum and maybe approximate it?

    Any suggestions would be much appreciated!
     
  2. jcsd
  3. Feb 4, 2012 #2
    Anyone an idea? Sorry for bumping this.
     
  4. Feb 5, 2012 #3

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    Part of the problem is that this has nothing to do with "Linear and Abstract Algebra". I am moving it to "general math".
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Stuck - infinite sum
  1. Stuck Again (Replies: 3)

  2. Stuck on the inverse (Replies: 9)

  3. Stuck on limits (Replies: 7)

Loading...