1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Sturm-Liouville question

  1. Jun 7, 2006 #1
    View attachment 7093
    I have a question that pertains to the Sturm-Liouville theory. Prove that {sin((pi)nx/a)} n=1 (a>0) is the basis for L2 (0,a).
    Last edited: Jan 20, 2007
  2. jcsd
  3. Jun 12, 2006 #2


    User Avatar
    Homework Helper

    A basis set for L^2 (0,a)

    I will assume we are dealing with continuous, real-valued functions here, as in your posted theorem. A set of functions, say [tex]\left\{ f_{n}(x)\right\}_{n=1}^{\infty},[/tex] forms a basis for L2(0,a) if and only if

    for [tex]g(x)\in L^2(0,a)[/tex] we have [tex]\left< f_{n}(x),g(x)\right> =0[/tex] for every [tex]n=1,2,\ldots[/tex] implies that [tex]g(x)=0,[/tex]

    where <,> denotes the inner product on [tex]L^2(0,a)[/tex] defined by [tex]\left< g(x) , h(x)\right> = \int_{0}^{a}g(x)h(x) dx[/tex]

    In the above requirement for a set of functions to be basis, it should be understood that

    [tex]\left< f_{n}(x),g(x)\right> =0[/tex] for every [tex]n=0,1,2,\ldots[/tex]

    means that

    [tex]\left< f_{0}(x),g(x)\right> =\left< f_{1}(x),g(x)\right> =\cdots =0[/tex]

    or equivalently that g(x) is orthogonal to every fn(x),

    the "implies that [tex]g(x)=0,[/tex]" part means that and the only function g(x) for which this condition may be satisfied (if the set of functions be a basis) is the zero function.

    Now since we are dealing with continuous, real-valued functions, the Stone-Weierstrass theorem (in particular, Weierstrass approximation theorem) applies and any [tex]g(x)\in L^2(0,a)[/tex] can be approximated by a polynomial with arbitrary precision, hence we will test our set of functions against [tex]g(x)=c_0+c_1x+c_2x^2+\cdots +c_mx^m=\sum_{k=0}^{m}c_kx^k[/tex] for [tex]m=0,1,2,\ldots[/tex], where not every ck is zero. Here it goes:

    [tex]\left< f_{n}(x) , g(x)\right> = \int_{0}^{a}\left( \sum_{k=0}^{m}c_kx^k \right) \sin\left( \frac{\pi nx}{a} \right) dx = \sum_{k=0}^{m}c_k\int_{0}^{a}x^k \sin\left( \frac{\pi nx}{a} \right) dx[/tex]

    then prove that if the last integral is zero for every n=1,2,..., then [tex]c_k=0[/tex] for k=0,1,2,...m and you're done. You might try using [tex]\sin (x) = \frac{e^{ix}-e^{-ix}}{2i}[/tex] to evaluate the integral.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook