# ##SU(2, \mathbb C)## parametrization using Euler angles

• I
• cianfa72

#### cianfa72

TL;DR Summary
About the ##SU(2, \mathbb C)## parametrization using Euler angles.
Hi,
I found on some lectures the following parametrization of ##SU(2, \mathbb C)## group elements

\begin{pmatrix}
e^{i(\psi+\phi)/2}\cos{\frac{\theta}{2}}\ \ ie^{i(\psi-\phi)/2}\sin{\frac{\theta}{2}}\\
ie^{-i(\psi-\phi)/2}\sin{\frac{\theta}{2}}\ \ e^{-i(\psi+\phi)/2}\cos{\frac{\theta}{2}}
\end{pmatrix}
where ##\theta, \psi## and ##\phi## are the three Euler angles. In particular ##\theta## runs in the closed interval ##[0, \pi]## whereas ##\psi## and ##\phi## in the range ##[0, 2\pi]## -- such a parametrization includes all and only ##SU(2 , \mathbb C)## group elements. That is actually a "closed box" in ##\mathbb R ^3## so to get a chart from it we need to exclude the box "boundary". This way we get a not global chart for ##SU(2)##. Since we know it is homeomorphic to ##\mathbb S^3## we can cover it with at least two charts.

Apart the above chart, which is one of the other charts for it ? Thanks.

Last edited:
Off topic: Can you quote a textbook that uses the notation ##SU(2,\mathbb C)##?

dextercioby
martinbn said:
Off topic: Can you quote a textbook that uses the notation ##SU(2,\mathbb C)##?
I think it is not a standard notation, see for instance this lecture.

Btw the following map ##\varphi: \mathbb C^2 \rightarrow \mathbb C^4##
$$(a,b)\mapsto \begin{bmatrix} a & -\overline b \\ b & \overline a \end{bmatrix}$$
is injective and continuous (as map from ##\mathbb C^2## to ##\mathbb C^4##). The inverse map ##\varphi^{-1}## restricted from the image ##A=\varphi(\mathbb C^2)## to ##\mathbb C^2## should be the projection ##\pi|_A##. Hence it is continuous in the subspace topology from ##\mathbb C^4## the set ##A## is endowed with. Therefore ##\varphi## is homeomorphis with its image ##A## (in the subspace topology).

Is the above correct ?

Last edited:
Any comment ? Thanks.

cianfa72 said:
TL;DR Summary: About the ##SU(2, \mathbb C)## parametrization using Euler angles.

Hi,
I found on some lectures the following parametrization of ##SU(2, \mathbb C)## group elements

\begin{pmatrix}
e^{i(\psi+\phi)/2}\cos{\frac{\theta}{2}}\ \ ie^{i(\psi-\phi)/2}\sin{\frac{\theta}{2}}\\
ie^{-i(\psi-\phi)/2}\sin{\frac{\theta}{2}}\ \ e^{-i(\psi+\phi)/2}\cos{\frac{\theta}{2}}
\end{pmatrix}
where ##\theta, \psi## and ##\phi## are the three Euler angles. In particular ##\theta## runs in the closed interval ##[0, \pi]## whereas ##\psi## and ##\phi## in the range ##[0, 2\pi]## -- such a parametrization includes all and only ##SU(2 , \mathbb C)## group elements. That is actually a "closed box" in ##\mathbb R ^3## so to get a chart from it we need to exclude the box "boundary". This way we get a not global chart for ##SU(2)##. Since we know it is homeomorphic to ##\mathbb S^3## we can cover it with at least two charts.

Apart the above chart, which is one of the other charts for it ? Thanks.

Consider $\mathbb{R} \to \mathbb{S} : x \mapsto e^{ix}$. We can obtain a two-chart atlas for $\mathbb{S}$ from this by taking the domains to be open invervals of width $2\pi$ whose images between them cover $\mathbb{S}$; for example $(-\pi,\pi)$ which covers everything except -1 and $(0, 2\pi)$ which covers everything except 1.

Apply this logic to the above parametrization.

cianfa72
pasmith said:
for example $(-\pi,\pi)$ which covers everything except -1 and $(0, 2\pi)$ which covers everything except 1.
You mean -1 and 1 as complex numbers (i.e. the pairs (-1,0) and (1,0) under the identification ##\mathbb C \cong \mathbb R^2##).

As far as I can understand what you said, If we define ##x =(\psi+\phi)/2## and ##y =(\psi - \phi)/2## then we obtain a two-chart atlas for ##SU(2)## starting from the parametrization in post#1. However to get that atlas we need a similar approach for ##\theta## that runs in the closed interval ##[0, \pi]##.

Last edited:
martinbn said:
Off topic: Can you quote a textbook that uses the notation ##SU(2,\mathbb C)##?
I try to use always the field. It is redundant in that case but a good habit in the general case, especially when groups with complex matrix entries are considered real manifolds. And it makes the mention of the characteristic unnecessary.

dextercioby
fresh_42 said:
I try to use always the field. It is redundant in that case but a good habit in the general case, especially when groups with complex matrix entries are considered real manifolds. And it makes the mention of the characteristic unnecessary.
But the point is the ##\mathbb C## is not the base field. If you view them as Lie groups then they are real groups (as in real manifolds) and the standard notation is ##SU(2)##. If you view them as algebraic groups they are algebraic varieties over the real numbers and the standard notation is ##SU(2,\mathbb C/\mathbb R)##. More generally ##SU(2, E/ F)## for a quadratic extension ## E/ F## are groups over the the field ##F##. Over the quadratic extension ##E## the group splits and is isomorphic to ##SL(2)##.

martinbn said:
But the point is the ##\mathbb C## is not the base field.
Base field of what? ##SU(2)=SU(2,\mathbb{C})## has complex entries. If I consider it as a real manifold, I write ##SU_\mathbb{R}(2,\mathbb{C})## like I would indicate ##V_\mathbb{F}## as a vector space over ##\mathbb{F}## if there is a doubt about it. However, I try to avoid writing ##SU_\mathbb{R}(2,\mathbb{C}),## I prefer ##\mathfrak{su}_\mathbb{R}(2,\mathbb{C})## and let the group be what it is, complex. I generally do not like the fact that a) reals are most often automatically assumed to be the scalar field and b) that linear (in-)dependence almost never states the scalar field, which is sometimes a serious problem!

Last edited:
fresh_42 said:
Base field of what? ##SU(2)=SU(2,\mathbb{C})## has complex entries. If I consider it as a real manifold, I write ##SU_\mathbb{R}(2,\mathbb{C})## like I would indicate ##V_\mathbb{F}## as a vector space over ##\mathbb{F}## if there is a doubt about it. However, I try to avoid writing ##SU_\mathbb{R}(2,\mathbb{C}),## I prefer ##\mathfrak{su}_\mathbb{R}(2,\mathbb{C})## and let the group be what it is, complex. I generally do not like the fact that a) reals are most often automatically assumed to be the scalar field and b) that linear (in-)dependence almost never states the scalar field, which is sometimes a serious problem!
It has real dimension three. It cannot be complex since three is not even.

martinbn said:
It has real dimension three. It cannot be complex since three is not even.
It is an algebraic group of matrices with complex entries like ##GL(n,\mathbb{C})## or ##SL(n,\mathbb{C})## are. I only use the same nomenclature that notes the field where the matrix entries are taken from.

Dimension kicks in if we consider them as Lie groups, i.e. consider the corresponding Lie algebra. And if we do so, it is even more important to distinguish the fields!

fresh_42 said:
It is an algebraic group of matrices with complex entries like ##GL(n,\mathbb{C})## or ##SL(n,\mathbb{C})## are. I only use the same nomenclature that notes the field where the matrix entries are taken from.

Dimension kicks in if we consider them as Lie groups, i.e. consider the corresponding Lie algebra. And if we do so, it is even more important to distinguish the fields!
As algebraic groups the unitary groups are not complex. They become isomorphic to the special linear groups over an algebraicly closed field (already over the quadratic extension).

cianfa72 said:
You mean -1 and 1 as complex numbers (i.e. the pairs (-1,0) and (1,0) under the identification ##\mathbb C \cong \mathbb R^2##).

As far as I can understand what you said, If we define ##x =(\psi+\phi)/2## and ##y =(\psi - \phi)/2## then we obtain a two-chart atlas for ##SU(2)## starting from the parametrization in post#1. However to get that atlas we need a similar approach for ##\theta## that runs in the closed interval ##[0, \pi]##.

You are only dealing with a quarter period in the $\theta$ dependence; the end points are distinct. You need only 4 charts whose domains are $(\theta,\psi,\phi) \in [0,\pi] \times A \times B$ where $A$ and $B$ are independently either $(-\pi,\pi)$ or $(0, 2\pi)$.

cianfa72
pasmith said:
You are only dealing with a quarter period in the $\theta$ dependence; the end points are distinct. You need only 4 charts whose domains are $(\theta,\psi,\phi) \in [0,\pi] \times A \times B$ where $A$ and $B$ are independently either $(-\pi,\pi)$ or $(0, 2\pi)$.
Take for instance the chart ##\varphi## with domain ##[0,\pi] \times (-\pi, \pi) \times (- \pi, \pi)##. Is this domain open in ##\mathbb R^3## ?

Last edited:
cianfa72 said:
Take for instance the chart ##\varphi## with domain ##[0,\pi] \times (-\pi, \pi) \times (- \pi, \pi)##. Is this domain open in ##\mathbb R^3## ?
No. You have a closed interval for the first part.

jbergman said:
No. You have a closed interval for the first part.
Exactly. Is there a way to "breakdown" that closed interval ##[0,\pi]## in open intervals to get overlapping charts for ##SU(2)## from open sets in ##\mathbb R^3## ?

Last edited:

• Topology and Analysis
Replies
12
Views
267
• Topology and Analysis
Replies
61
Views
789
• Quantum Physics
Replies
3
Views
188
• Differential Geometry
Replies
17
Views
3K
• General Math
Replies
2
Views
999
Replies
0
Views
575
• Differential Geometry
Replies
1
Views
1K
• Linear and Abstract Algebra
Replies
1
Views
831
• Differential Geometry
Replies
3
Views
2K
• Mechanics
Replies
12
Views
2K