I was reading a gauge field theory book and was told to refer to Quigg's Gauge Theories of the Strong, Weak, and Electromagnetic Interactions ch 9.2 The SU(5) Model, so I did not start from the first page of Quigg's book.(adsbygoogle = window.adsbygoogle || []).push({});

In page 277, he started from

Q = T3 + K To,

where T3 is a generator of SU(2) and To is a weak-isosinglet generator of SU(5).

Σ Q^2 = (1+K^2) Σ T3^2

working on 5* representation and get

K^2 = 5/3

So To differs by a factor of (3/5)^(1/2) from U(1) hypercharge operator Y, and

g' ^2 = (3/5) (g_SU(2))^2

My questions are,

1. Why is it that from K^2 = 5/3 we can get g' ^2 = (3/5) (g_SU(2))^2 ?

2. Since Q = I3 + (1/2)Y, why is it that To differs by a factor of (3/5)^(1/2) but not (1/2)*(3/5)^(1/2) from Y?

3. Is there any beginner friendly reference for the derivation of Σ Q^2 = (1+K^2) Σ T3^2 ?

Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# SU(5) coupling question

Loading...

Similar Threads for coupling question |
---|

A Question about Wall crossing formula |

B Questions about Quantum Gravity |

**Physics Forums | Science Articles, Homework Help, Discussion**