Hi,(adsbygoogle = window.adsbygoogle || []).push({});

consider a (finite dimensional) vector space ##V=U\oplus W##, where the subspaces ##U## and ##V## are not necessarily orthogonal, equipped with a bilinear product ##*:V\times V \rightarrow V##.

The subspace ##U## is closed under multiplication ##*##, thus ##U## is asubalgebraof ##V##.

Does this imply that also ##W## is a subalgebra of ##V##?

(Note, I can already prove the special case that if U and W are orthogonal, then both U and W are indeed subalgebras).

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Subalgebras and direct sums

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**