1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Subsets of R^n

  1. Feb 11, 2008 #1
    1. The problem statement, all variables and given/known data

    The Premise:

    Here One must prove that that R^n and Ø are the two subsets of R^n, which is both open and closed. You must that these are the only subsets of R^n which has this property!

    Let [tex]X \subseteq \mathbb{R}^n[/tex] be a subset, which is both open and close, and here we must prove that if either X = R^n or X = \emptyset. Thusly [tex]X \neq R^n[/tex] and [tex]X \neq \emptyset.[/tex]

    Prove that this assumption leads to a contradiction:

    Let [tex]Y = \mathbb{R}^n \setminus X[/tex] and show that Y is both open and closed and not empty!



    2. Relevant equations



    3. The attempt at a solution

    This can only be the case if [tex]Y = \mathbb{R}^n \setminus \emptyset = \mathbb{R}^n[/tex] wouldn't it???

    Cheers
    Frank
     
  2. jcsd
  3. Feb 11, 2008 #2

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    If X and Y are both nonempty, pick x in X and y in Y. Now consider f(t)=x*(1-t)+y*t, L={f(t): t in [0,1]}. L is a line segment connecting x and y. Now think about the inverse image of X and Y intersected with L. You should be able to conclude that [0,1] can be split into two disjoint open sets whose union is [0,1]. Derive a contradiction from that.
     
  4. Feb 11, 2008 #3
    Hi Dick,

    The leads me exactly to question

    Let [tex]f: \mathbb{R}^n \rightarrow \mathbb{R}[/tex] be defined be

    [tex]f(x) = \left[\[\begin{array}{cccc}1 \ \mathrm{for} \ x\in X, \\ 0 \ \mathrm{for} \ x\in Y, \\\end{array}[/tex]

    Then prove that f is continious for every [tex]x_0 \in X.[/tex]

    Proof:

    If there exist a ball with center in every x0 in the neighbourhood X. Then every real function defined on that neighbourhood is continious.

    Is that what is meant proving the continuity of that function? Hope I have understood this correctly:)

    Best Regards
    Frank.
     
  5. Feb 11, 2008 #4

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    Ok. Let's work with that. Yes, it's clear f(x) is continuous everywhere on R^n. Now as before take x in X and y in Y and write g(t)=x*(1-t)+y*t. g is a continuous map from [0,1] to R^n. So h(t)=f(g(t)) is a continuous map from [0,1] to [0,1]. h(0)=1 (since g(0)=x), h(1)=0 (since g(1)=y) and h takes on only the values 0 and 1. What's wrong with that picture???
     
  6. Feb 11, 2008 #5
    The X isn't open in Your case??

    I know that the definition regarding the continious map (fnc between two topological space )can only be continious if the preimage is open. And since that we know that R^n is both open and closed, then f is continious for every x_o in X. Isn't that the answer for question 2?

    Isn't it???

    Sincerely Yours
    Frank...
     
  7. Feb 11, 2008 #6

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    In order to prove that the only "clopen" (both closed and open) subsets of Rn are Rn itself and [itex]\emptyset[/itex] you are going to need the fact that Rn is a connected set.
     
  8. Feb 11, 2008 #7
    Hello Hall and Dick,

    2)

    Proof:

    R^n is connected which means that it cannot be partioned into two none-empty subsets, and if f is a continious map and therefore defined on the whole of R^n. Then f must also be continious for any x_0 on X, because is the pre-image of R^n, which is also open according to the definition.

    3) Prove that f is continious for every y_o in Y. Since we know that the only version of Y which is both open and closed can be where Y = R^n \ (X = \emptyset), and since we know from 2) that any point on X is continious, then every y_0 point on Y must be continious as well??

    Cheers.
    Frank.

    Have I understood it correctly??
     
    Last edited: Feb 11, 2008
  9. Feb 11, 2008 #8

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    Your replies are a little confusing. f(x) is continuous because x is in either X or Y and both X and Y are open. If it's in X, then it's constant and equal to one on a neighborhood of x. If it's in Y, then it's constant and equal to zero on a neighborhood of x. Think epsilon/delta.
     
  10. Feb 11, 2008 #9
    I am sorry, this CLopen set business is fairly new to me.

    Then my professor tells me to construct a proof that f is continious for x_0 in X. Doesn't he simply want me to show if R^n is seen as Hallsoft writes a connected set, then all possible X_0 lies in the whole of R^n, making f continious on the whole neighbourhood R^n???

    Best Regards
    Frank.
     
  11. Feb 11, 2008 #10

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    I'm not sure I understand any of that, sorry. :(. If you KNOW R^n is connected then there is not much to prove. Have you proved that?
     
  12. Feb 11, 2008 #11

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    You ALMOST stated a correct definition of continuous. f is continuous if the preimage of EVERY open set is open. Let's take this slowly. Take an open set in the reals. Suppose it contains both 0 and 1. Then what is it's preimage under f? Suppose it contains only 0. Then what's it's preimage? Etc.
     
  13. Feb 12, 2008 #12
    Hi Dick and Hallsoft,

    Here is the proof of number (2)

    Let [tex]f: \mathbb{R}^n \rightarrow \mathbb{R}[/tex] be defined as

    [tex]f(x) = \left\{\begin{array}{ccc} 1 \ \ \mathrm{for} \ x \in X \\ 0 \ \ \mathrm{for} \ x \in Y \end{array} [/tex]

    Prove that f is continious in every [tex]x_0 \in X.[/tex]

    Proof

    We know that X is either [tex]\mathbb{R}^n[/tex] or [tex]\emptyset[/tex]. Assuming that X is a connected Space and that f is a two valued function on X. The trick is to show that f is constant. If [tex]\mathbb{R}^n = f^{-1}({0})[/tex] be the inverse image of the subsets [tex]\{0\}[/tex] and [tex]\{1\}[/tex]. Assuming that {0} and {1} are open subsets of the metric space {0,1}, both [tex]\mathbb{R}^n[/tex] and [tex]\emptyset[/tex] are then open in X.

    Assuming that any subset of X is nonempty, f takes both values 0 and 1, so f is not constant.

    Also f is continious on X because the inverse image of every open subset of {0,1} is open in X.

    Therefore the entire neighbourhood X is both connected and continous for any element of X.

    How does this sound???

    Regards
    Frank.
     
  14. Feb 12, 2008 #13

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    That sounds really unclear. DON'T assume R^n is connected. DON'T assume X=R^n or {}. That's basically what we are trying to prove, eventually. Don't even try to write the whole proof down, it gets all jumbled up when you do. ASSUME ONLY that X is open, Y is open, (X union Y)=R^n and (X intersect Y)={}. This a basically just a restatement of the assumption that X is clopen and labelling Y=(R^n/X). That's all. Now just two questions. i) what is f^(-1)({1})? ii) if A is an open subset of R that contains 1 but not 0, what is f^(-1)(A)?
     
    Last edited: Feb 12, 2008
  15. Feb 12, 2008 #14
    Hi Dick,

    Sorry that I am unclear,

    f^(-1)({1}) that must be pre-image of X. And f^(-1)(A) is just be preimage of A?

    Cheers,
    Frank.
     
  16. Feb 12, 2008 #15

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    f^(-1)({1}) is not the preimage of X. It IS X, right? It's the PREIMAGE of {1}. You have to use words carefully in this game. Sure, f^(-1)(A) is the preimage of A, that's what preimage means. But what set that we are discussing IS the preimage of A? I've told you A contains 1 but not 0.
     
  17. Feb 12, 2008 #16

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    f^{-1}(A) is, by definition, the "preimage" of A- the set of all x such that f(x) is in A.

    But f^{-1}({1}) is not the "preimag" of X, it is just the set of all x such that f(x)= 1.
     
  18. Feb 12, 2008 #17
    Sorry this rough terratory for me.

    I am not asking for the proof, but could you direct me please to the which definition and theorem I need to build together to construct the needed proof?

    I have a feeling its more than just connected space is connected?

    Sincerely Frank.
     
  19. Feb 12, 2008 #18

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    Judging by the terminology you are using you already have all of the definitions and theorems you need to prove f is continuous (which is what you should concentrate on first). You just need to learn to put those concepts together grammatically. I'm going to ask you again. A contains 1 but doesn't contain 0. Look at the definition of f and tell me what f^(-1)(A) is. Think twice before you answer.
     
  20. Feb 12, 2008 #19
    Since F is defined from R^n -> R, then as I understand it now f^(-1)(A) = 0 ?

    I can connected space, continuity of a function(both locally and uniformally), but putting them together to prove the above.

    I simply give up :cry::cry::cry::cry::cry::cry::cry:

    Cheers,

    Frank.
     
    Last edited: Feb 12, 2008
  21. Feb 12, 2008 #20

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    It is simply unbelievable to me that you are working with continuous functions and uniformly continuous functions but don't know what f-1(A) means!
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?