Hi, I'm wondering how I would decide how many "subspaces of each dimension [tex]Z_2^3 [/tex] has." The answer is: 1 subspace with dim = 0, 7 with dim = 1, 7 with dim = 2, 1 with dim = 3.(adsbygoogle = window.adsbygoogle || []).push({});

I'm looking for subsets of [tex]Z_2^3 [/tex] which are closed under addition and scalar multiplication. An arbitrary vector in [tex]Z_2^3 [/tex] is (a,b,c) where [tex]a,b,c \in Z_2 [/tex]. I can't think of a general way to do this, trial and error is a possibility and quite time consuming. So I think that there is some concept being tested which I'm not seeing.

Any set consisting of a single vector with the zero vector in Z_2 would be a subspace since it would be closed under addition. But what about sets with 3 or more elements. I'm not sure how to approach this question. Can someone please help me out?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Subspaces and dimension

**Physics Forums | Science Articles, Homework Help, Discussion**