(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let X1,..,Xn be a random sample of size n from a geometric distribution with pmf [tex]P(x; \theta) = (1-\theta)^x\theta[/tex]. Show that [tex]Y = \prod X_i[/tex] is a sufficient estimator of theta.

2. Relevant equations

3. The attempt at a solution

So [tex]\prod P(x_i, \theta) = (1-\theta)^{\Sigma x_i} \theta^n[/tex]

I don't believe that the factorization theroem can be applied here. Is there some trick to this that I'm not seeing?

Thank you in advance.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Sufficient Estimator for a Geometric Distribution

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**