Sum of distinct primes

  • Thread starter chhitiz
  • Start date
221
0
i observed that every composite no. with exception of 4 and 6 can be expressed as sum of distinct prime no.s. eg: 200=103+97 100=53+47 25=13+7+5
is this true? is there any theorem stating as such?
 
Interesting question!

It seems true. Maybe you could prove it using induction?

The base cases could be integers from 1 to 20, say, by just showing the sums.

Then you could assume that it works for all composite numbers up to a composite number k.

Then does it work for the next composite number? Well, look at the largest prime number less than it. If composite - prime is not 1 or 4 or 6, then the sum can certainly be expressed as prime + (sum for the difference composite - prime, which can definitely be done... if the difference is prime, just take the prime, otherwise, the inductive hypothesis covers it). If the difference is 1 or 4 or 6, try the next prime number below the one you just tried. If this isn't 4 or 6, do the same thing. If it is, try the next lower prime number. And etc.

21 = composite, 19 = prime, diff = 2, done with sum = 19 + 2.

22 = composite, 19 = prime, diff = 3, done with sum = 19 + 3.

24 = composite, 23 = prime, diff = 1. Try 19 = prime, then diff = 5 and done with 19 + 5.

25 = composite, 23 = prime, diff = 2, done with 23 + 2.

26 = composite, 23 = prime, diff = 3, done with 23 + 3.

27 = composite, 23 = prime, diff = 4, try 19 = prime, diff = 9, done with 19 + psum(9) = 19 + 7 + 2.

etc.

This is just a sketch, but I think it should work. Does anybody have any comments?
 

CRGreathouse

Science Advisor
Homework Helper
2,818
0
You can prove this with Bertrand's postulate.
 
Yes, indeed.
It also follows from Bertrand's postulate that the number of such distinct primes does not exceed log2(N), where N is the original number to be decomposed.
Am I correct?
 

epenguin

Homework Helper
Gold Member
3,492
581
This is almost identical to 'Goldbach's conjecture' which is more than two and a half centuries old, famous, and has never been proved, so you are unlikely to.
 
This one is 'easier' in the sense that there is no limit on the number of primes that make the sum, just that they are distinct, whilw Goldback's conjecture restricts to two primes. It seems to me that Bertrand's postulate is sufficient for the proof.
 

Related Threads for: Sum of distinct primes

  • Posted
Replies
2
Views
3K
Replies
4
Views
1K
Replies
7
Views
4K
Replies
16
Views
6K
Replies
12
Views
6K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top