Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Superficially simple vector differential equation problem

  1. Feb 18, 2013 #1

    cfp

    User Avatar

    Hi,

    I have the following vector differential equation (numerator layout derivatives):

    [tex]\frac{\partial e(v)}{\partial v}=\frac{1}{\beta} \frac{\partial w(v)}{\partial v} \Gamma^{-1}[/tex]

    where both ##e(v)## and ##w(v)## are scalar functions of the vector ##v##, and where ##\Gamma## is a symmetric invertible matrix with all columns (and rows) summing to 1.

    The naive solution would be ##e(v)=\frac{1}{\beta} w(v) \Gamma^{-1}##, but this is incorrect since ##e(v)## is a scalar.

    Clearly, when ##\Gamma## is the identity matrix, ##e(v)=\frac{1}{\beta} w(v)## is a valid solution. My question is, does a solution exist for any other value of ##\Gamma##?

    Tom
     
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you help with the solution or looking for help too?
Draft saved Draft deleted



Similar Discussions: Superficially simple vector differential equation problem
Loading...