Just had my test on Vector Fields and there was one question which really confused me. It asked to find the surface area of the parabaloid z = 9-x^2 -y^2 which is above the cone z = 8Sqrt[x^2 + y^2]. My memory told me to use the differential in rectangular coordinates and then convert to cylindrical. The process of Sqrt[1 + dz/dx ^2 + dz/dy ^2]. This leads to an integral of r Sqrt[1 + 4r^2] in cylindrical coordinates. After doing so and getting an answer my teacher said he messed up when creating the problem and that the integral turned out to be r^2 * Sqrt[1 + 4r^2]. This seemed non-intuitive and took me a good amount of time before I went through the process of parametrizing the variables to: x = tcos(theta), y = tsin(theta), and z = 9-t^2. (t being the same as r). Finding the partial derivatives and solving for the magnitude of the cross product led me to t Sqrt[1 + 4t^2] for my area integral. Making my area differential t dt dtheta gave me that extra t to make the t squared; however, this seems confusing because each method created different answers. The first thing coming to mind would be that because my parameters are already in polar coordinates the extra t in the differential shouldn't be there and I should be just able to integrate with dt dtheta. Which way is correct and why?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Surface Area Confusion

**Physics Forums | Science Articles, Homework Help, Discussion**