The line integral can be expressed, at least, in this three different ways: [tex]\int \vec{f} \cdot \hat{t} ds = \int \vec{f} \cdot d\vec{s} = \int \vec{f} \cdot d\vec{r}[/tex] The surface integral too (except by least expression above): [tex]\iint \vec{f} \cdot \hat{n} d^2S = \iint \vec{f} \cdot d^2\vec{S}[/tex] My ask is: exist some equivalent/analogous expression to ∫(adsbygoogle = window.adsbygoogle || []).push({}); f·drfor surface integral? In other words, is possible to write the surface integral in terms of the position vectorr? Maybe: ##\iint \vec{f} \cdot d^2\vec{r}## ?

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Surface integral

**Physics Forums | Science Articles, Homework Help, Discussion**