# Symmetrical Components

I wonder if someone can help me how to find the symmetrical components of a 5-phase system. What would be the positive and negative sequences? I'm saying this because in a 3-phase system I can find the positive, negative and zero sequence in function of line currents.

Related Electrical Engineering News on Phys.org

check out wikipedia

Or the famous article by Fortescue

As a push in the right direction, how many balanced systems (sequences) do you need?

I have no reference on doing fortescue transformation for system with phases different from 3.

In fact, I'm trying to perform this using simulink, but it does not have any block with phases different from three. So I don't know how to watch the qd0 -waveforms of a synchronous machine with 5-phase .

See "Symmetrical Components" by Wagner & Evans, 1933, still in print.

Claude

I wonder if someone can help me how to find the symmetrical components of a 5-phase system. What would be the positive and negative sequences? I'm saying this because in a 3-phase system I can find the positive, negative and zero sequence in function of line currents.
With 3-phase there are 3 components, I1 (positive, A-B-C), I2 (negative, C-B-A), and I0 (zero, all 3 in unison), called "sequences".

With 5-phase there are 5 components. They are I1 (positive, A-B-C-D-E), I2 (A-C-E-B-D). I3 (A-D-B-E-C), I4 (negative, E-D-C-B-A), and I0 (zero, all 5 in unison).

In general for n phases there will be n sets of phasors. No. 1 is the positive sequence, having the same rotation as the overall system, i.e. A, B, C, etc. No. 2 is the next set where the sequence is every 2nd phase, i.e. A-C-E-G, etc. No. 3 is next, with sequence A-D-G, etc. which is every 3rd phase. The next to last set is no. "n-1" which is negative sequence, i.e. n, n-1, n-2, ---, C, B, A. Finally we have zero sequence, all n phases in unison.

Claude

Last edited: