For a graph of any function, one of following conditions is said to exist so as for it to be symmetric:(adsbygoogle = window.adsbygoogle || []).push({});

a graph is symmetric about y-axis if along with a point (x,y) a point (-x, y) exists.

a graph is symmetric about x-axis if along with a point (x,y) a point (x, -y) exists.

a graph is symmetric about origin if along with a point (x,y) a point (-x, -y) exists.

isn't it possible that one of the above condition is satisfied but still the graph is not symmetric. what i want to say is that can't it be possible for a curve to have such shape that it does not look symmetric but still passes through the two points highlighted by one of the conditions mentioned above?

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Symmetry in graphs

**Physics Forums | Science Articles, Homework Help, Discussion**