- #1
roam
- 1,271
- 12
Homework Statement
This is from a solved problem:
Here is a system:
[tex]\begin{bmatrix} {1 & 0&0 \\ -1&0&0\\3&-5&0 \end{bmatrix} \begin{bmatrix} {x \\ y\\z \end{bmatrix}= \begin{bmatrix} {0\\ 0\\0\end{bmatrix}[/tex]
A general solution of this system is
[tex]x= \begin{bmatrix} {0 \\ 0\\t \end{bmatrix}= \begin{bmatrix} {0 \\ 0\\1 \end{bmatrix} t[/tex]
So, how did they get this solution? I tried solving this and I just don't get it!
The Attempt at a Solution
The matrix corresponds to the set of equations:
x=0
-x=0
3x-5y=0
If I take "y" to be the free variable, I have x=5/3y therefore the solution to the system will be
[tex]\begin{bmatrix} {x \\ y\\z \end{bmatrix} = \begin{bmatrix} {5/3 \\ 1\\0 \end{bmatrix} y + \begin{bmatrix} {0 \\ 0\\1 \end{bmatrix} z[/tex]
But if I take "x" to be the free variable I get y=3/5x, so I get the following solution:
[tex]\begin{bmatrix} {x \\ y\\z \end{bmatrix} = \begin{bmatrix} {1 \\ 3/5\\0 \end{bmatrix} x + \begin{bmatrix} {0 \\ 0\\1 \end{bmatrix} z[/tex]
How do I know which one (x or y) should be taken as the free variable?
Could anyone please explain to me how to get the right answer?