I have a system of two PDEs:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]y_t+(h_0v)_x=0 \quad (1a)[/tex]

[tex]v_t+y_x=0 \quad (1b)[/tex],

where [itex]h_0[/itex] is a constant.

Then I want to show that (1) has traveling wave solutions of the form

[tex]y(x,t)=f(x-ut) \quad (2a)[/tex]

[tex]v(x,t)=g(x-ut) \quad (2b)[/tex],

where [itex]u[/itex] is the propagation velocity.

Differentiating (1a) w.r.t. [itex]x[/itex] and (1b) w.r.t. [itex]t[/itex] I conclude that

[tex]\frac{\partial^2v}{\partial t^2}=h_0\frac{\partial^2v}{\partial x^2}[/tex],

but I am not sure that this is useful. I have tried a linear change of variables in order to arrive at a solution. Introducing the variables [itex]\alpha=ax+bt[/itex] and [itex]\beta=cx+dt[/itex] I arrive at a solution for [itex]v[/itex], namely either [itex]v=C(x+t)[/itex] or [itex]v=C(x-t)[/itex], depending on how the constants [itex]a,b,c,d[/itex] are chosen. Here [itex]C[/itex] is an arbitrary function. Indeed this looks like (2b), but I would like to put forward a more rigorous argument.

I would like some thoughts on this problem, and any hint on how to solve it is welcome. And is it possible to say anything about the relationship between [itex]f[/itex] and [itex]g[/itex] in (2)?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: System of PDEs

**Physics Forums | Science Articles, Homework Help, Discussion**