Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

T3 + E =mc3

  1. Aug 23, 2004 #1

    T3 + E = mc3

    Time to the third Power + Energy = Mass - Circumference to third Power

    By Jason A. Voigt

    The three cycles in this system are closed loop systems after start up energy is applyed. once opeerating temp of 152 to 190 degree is acheived
    then the three system just work in a loop so that the 1500 to 1 release of energy is done in the system form turning water in to steam

    Using this system free energy can be acheived read on to learn more about this.

    The hydro electric engine

    The basic of the hydroelectric engine work like this. It works with steam on demand and energy storage as heat with an electric cycle, mechanical cycle, coolant cycle.
    Instead of having a boiler and storing water in a tank and heating all the water at once. This engine uses steam on demand technology. By taping into the coolant system of the engine and connecting this line to the fuel injection system. Then injecting the coolant on a heat plate between the cylinder head and the block. It makes enough steam to push the piston down and the then the piston push the steam out the exhaust. Where it goes back in to the block and condenses back to coolant. Transferring the heat to rest of the coolant. The warmer the coolant in the block is it takes less energy to turn into steam. Therefore, when the coolant is at 190 degrees it only takes 22 degree more energy to reach the boiling point of 212 degrees. At this point, it would be running at 90% efficiency keeping 10% for safety. Then considering energy for start up of a battery and then having a closed loop electric system and on outside energy coming into the system it is really running 180%! 100% for engine operation and up to 80% free energy and 10% to keep the system running and 10% for a safety margin. This can be done with pistons or a turbine.

    The Hydro Electric Steam turbine

    Coolant system closed loop with energy storage as heat

    Electric system closed loop

    Turbine system with generator for electrical out put

    The coolant system has a large tank with 500 gallons of coolant. With extra room for expansion with a radiator and thermostat to keep coolant from going above 190 degrees. The storage tank it also has a pressure relief valve.
    Coolant is pumped to an injection system. Where it is injected into a tube with an electric heat plate that is at 500 degrees that turns the coolant into steam the steam that builds pressure in the chamber the chamber is coupled to a steam turbine witch turns a generator. The steam then passes through a one-way check valve so the steam can only exit the turbine. Then the steam goes back to the holding tank where it condenses back to a liquid coolant this also transfers heat raising the temperature of all the coolant in the tank. Therefore, when the coolant in the tank reaches 152 degrees this is the break-even point. It is now taking the same amount of energy to heat the coolant as you are getting
    Out of the generator. So when the coolant in the system reaches 190 degrees. It only takes 22 degree to reach 212 degree to turn it back into steam at this point it is only using 10% of the energy that it would take to heat cold coolant. Therefore, the system makes 90% more energy than it does takes to produce the steam.

    The system is now self-sufficient and produces 40% extra power free.

    In this system, 100% is equal to 50% due to energy storage as heat with 10% free power
    And 10% for safety.

    So the total over view is 200% total power.
    100% the complete loop of the system self sustaining
    80% free energy
    10% safety margin
    10% to keep the system running

    By Jason A. Voigt


    Hydro Electric Engine Electric Cycle

    Start power from Battery

    Into Inverter 12 V to 120 V

    Inverter to Heat Controller

    To 120V Electric Heater

    Thermo couple controls heat with Heat controller

    Heater heats Heat Plate

    Battery provides power For Starter to turn over engine
    And provides power to the injectors

    Alternator or Generator draws power from the crank
    To keep the battery charged and provides power to the
    Rest of the system

    Electric cycle starts over again except for the starter

    The Hydro-Electric engine Coolant cycle

    # 1 #2

    Coolant Coolant reaches break even
    Point of 106 Degrees

    Electric Pump Between 106 Degrees and 190
    Degrees 1% to 40% Free Energy

    Injectors Coolant Cycles starts over again

    Coolant sprayed on Heat plate


    Steam expands

    Piston moves down

    Crank rotates

    Exhausts valve opens

    Piston moves up


    Steam move through one way Check Valve
    Out of the cylinder only

    Steam moves through exhausts pipe

    Coolant condenses

    Heat transfers to the rest of the coolant
    Coolant raises to a temp of - 40 to 190 degrees

    Hydro-Electric Engine Mechanical

    Piston just past top dead center

    Steam Expands moving piston down and turning crank and Flywheel

    Piston moves past Bottom Dead Center

    Exhaust Valve opens

    Piston moves up steam is pushed out

    Valve closes

    Steam passes through Check Valve

    Cycle starts over

    Hydroelectric Engine

    By Jason A. Voigt

    There are three major parts to the engine

    It starts with Batteries to start warming the heat plate
    This heat plate is on top of the cylinders of the block and under the cylinder head
    This plate can be made of steal or any materiel that can transfer heat
    This can also be inserts in an insulated material
    The heat in the plate comes from cartridge heaters 120 volt that can reach 300 deg
    Or higher so the heater can keep up with heat demand with out dropping below 212
    Degrees. The power comes from the battery than into an inverter witch step the power from 12V dc to 120V ac it is than ran through a temp control and thermo couple to control the heat. The Cartridge heater witch makes the heat. There is also an alternator or a generator to draw power off the crank to recharge the electrical system. Once the heat plate is up to temperature, the heater is intermittent to keep up with heat loss. There is also a starter to start the engine turning over.


    The coolant system in the engine is where the water and coolant are normally used to collect heat from the engine and dissipate it. I this design it is used feed coolant to the fuel injectors in the cylinder head that are aimed at the heat plate to create steam on demand in the cylinder. Water to steam has an expansion rate of 1500 to 1 this expansion is what pushes the piston down. When the piston comes back up from inertial force the coolant is exhausted to the to the exhaust manifold and the exhaust pipe that has a one way check valve so the coolant steam can only travel out of the engine. The exhaust pipe that is connected to a radiator to complete the loop back to the coolant system. Where the steam condenses back to coolant. This also warms the coolant so it takes less energy to heat it the next time around up to the temperature of the thermostat. So in short, the energy used in the engine is stored as heat. So when the engine reaches operating temperature of 190 degrees it only take 22 degrees of temperature to reach 212 degrees this make the efficiency of the engine greater.
    To push the piston down with steam. There is also a radator cap set at 200 degrees
    So the engine can release energy keeping the engine safe if the thermostat false


    The piston moves past top dead center. Coolant injects, steam, pushes the piston down.
    And The flywheel on the engine rotates. At bottom dead center the exhausts valve opens moves the piston up pushing the steam out to the exhaust. The cam is on a one to one basis with the crank so every rotation is power and exhaust. There is an oil system to lubricate the engines moving parts.
  2. jcsd
  3. Aug 23, 2004 #2


    User Avatar

    ummmm....interesting. :uhh:
  4. Aug 23, 2004 #3

    Tom Mattson

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Physics Forums is not the place to post personal theories that have no experimental basis.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: T3 + E =mc3
  1. If E=MC2 (Replies: 9)

  2. E Books (Replies: 2)

  3. If E=M then (Replies: 7)

  4. E Field? (Replies: 3)

  5. E=mc2 e=hf (Replies: 4)