Let me first confess this a copy/paste of a question I asked on another forum; I trust it's not against the rules.(adsbygoogle = window.adsbygoogle || []).push({});

Let [tex]M[/tex] be a [tex]C^{\infty}[/tex] manifold, and, for some neighbourhood [tex]U\ni p \subsetneq M[/tex] let there be local coordinates [tex]x^i [/tex] such that [tex]p=(x^1,\,x^2,...,x^n)[/tex]

Suppose that [tex]T_pM[/tex] is a tangent vector space at [tex]p[/tex], and define a coordinate basis for [tex]T_pM[/tex] as [tex]\frac{\partial}{\partial x^i}[/tex].

By modeling on "ordinary" linear algebra, suppose that any [tex]v \in T_pM = \sum\nolimits_ i \alpha^i \frac{\partial}{\partial x^i}[/tex], where the [tex]\{\alpha^i\}[/tex] are scalar.

I want to prove that [tex]\alpha^i = v x^i[/tex].

My thoughts, based on inner product spaces......

Suppose [tex]V[/tex] is a vector space with inner products. Let the set [tex]\{e_j\} [/tex] denote the basis vectors. Then any [tex]v \in V[/tex] can be expressed as [tex]v = \sum \nolimits_j a^j e_j[/tex], where the [tex]\{a^j\}[/tex] are scalar.

Now the inner product of an arbitrary basis vector with an arbitrary vector will be denoted by [tex](v,e_i) = \sum \nolimits_j(a^j e_j, e_i)=\sum \nolimits_j a^j( e_j, e_i)[/tex] (since inner products are bilinear) hence [tex] (v, e_i) = \sum \nolimits_j a^j(e_j,e_i) = \sum \nolimits_j a^j \delta _{ij} = a^i[/tex]

This looks promising, except we don't have an IP on [tex]T_pM[/tex], and moreover, the [tex]\{x^i\}[/tex] arecoordinates, not a basis!

Where do I go from here? I tried the simple operation [tex]vx^i = \sum \nolimits_i \alpha^j \frac{\partial}{\partial x^j}x^i = \alpha^j\delta_{ij}= \alpha^i[/tex] but I am told this is no proof

Any thoughts out there? Have I effed up somewhere?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Tangent space question.

**Physics Forums | Science Articles, Homework Help, Discussion**